
Walrus: An Efficient Decentralized Storage Network
The MystenLabs Team
hello@mystenlabs.com
v2.0 – April 11, 2025

Abstract

Decentralized storage systems face a fundamental trade-off between
replication overhead, recovery efficiency, and security guarantees.
Current approaches either rely on full replication, incurring sub-
stantial storage costs, or employ trivial erasure coding schemes
that struggle with efficient recovery especially under high storage-
node churn. We presentWalrus, a novel decentralized blob storage
system that addresses these limitations through multiple technical
innovations.

At the core of Walrus is Red Stuff, a two-dimensional erasure
coding protocol that achieves high security with only 4.5x repli-
cation factor, while enabling self-healing recovery that requires
bandwidth proportional to only the lost data (𝑂 (|𝑏𝑙𝑜𝑏 |/𝑛) versus
𝑂 (|𝑏𝑙𝑜𝑏 |) in traditional systems). Crucially, Red Stuff is the first
protocol to support storage challenges in asynchronous networks,
preventing adversaries from exploiting network delays to pass ver-
ification without actually storing data.

Walrus also introduces a novel multi-stage epoch change proto-
col that efficiently handles storage node churn while maintaining
uninterrupted availability during committee transitions. Our sys-
tem incorporates authenticated data structures to defend against
malicious clients and ensures data consistency throughout stor-
age and retrieval processes. Experimental evaluation demonstrates
that Walrus achieves practical performance at scale, making it
suitable for a wide range of decentralized applications requiring
high-integrity, available blob storage with reasonable overhead.

1 Introduction

Blockchains support decentralized computation through the State
Machine Replication (SMR) paradigm [37]. However, they are prac-
tically limited to distributed applications that require little data
for operation. Since SMR requires all validators to replicate data
fully, it results in a large replication factor ranging from 100 to 1000,
depending on the number of validators in each blockchain.

While full data replication is practically needed for comput-
ing on state, it introduces substantial overhead when applications
only need to store and retrieve binary large objects (blobs) not
computed upon1. Dedicated decentralized storage [6] networks
emerged to store blobs more efficiently. For example, early net-
works like IPFS [30] offer robust resistance to censorship, enhanced
reliability and availability during faults, via replication on only a
small subset of nodes [47].

Decentralized blob storage is invaluable to modern decentralized
applications. We highlight the following use-cases:
• Digital assets, managed on a blockchain, such as non fungible

tokens (NFTs) need high integrity and availability guarantees
provided by decentralized blob stores. The current practice of
storing data off-chain on traditional stores only secures metadata,

1A recent example includes ‘inscriptions’ on bitcoin and other chains, see https:
//medium.com/@thevalleylif e/crypto- terms-explained-exploring-bitcoin-
inscriptions-51699dc218d2.

while the actual NFT data remains vulnerable to removal or
misrepresentation depending on the browser2.

• Digital provenance of data assets is also increasingly important
in the age of AI: to ensure the authenticity of documentary mate-
rial; to ensure training data sets are not manipulated or polluted;
and to certify that certain models generated specific instances of
data [45]. These applications benefit from authenticity, traceabil-
ity, integrity and availability decentralized stores provide.

• Decentralized apps, whether web-based or as binaries, need
to be distributed from decentralized stores. Today, the major-
ity of decentralized apps rely on traditional web hosting to
serve their front ends and client-side code, which offers poor
integrity and availability. Decentralized stores may be used to
serve web and dapps content directly while ensuring its integrity
and availability. Similarly, decentralized stores can ensure binary
transparency for software and support the storage needs of full
pipelines of reproducible builds to support the strongest forms
of software auditing and chain of custody [22, 29].

• Decentralized storage plays a critical role in ensuring data avail-
ability for roll-ups [1], the current scaling strategy of Ethereum.
In this setting, storage nodes hold the data temporarily allowing
blockchain validators to recover it for execution. As a result, the
system imposes replication costs solely on the netted state of
the roll-up, rather than the full sequence of updates (e.g. transac-
tions).

• Decentralized social network platforms [18] are trying to chal-
lenge centralized incumbents. But the nature of social network-
ing requires support for rich media user content, such as long
texts, images or videos. Beyond social, collaborative platforms as
well as civic participation platforms [4] need a way to store both
public interest data and the application data itself in credibly
neutral stores such as decentralized stores.

• Finally, the integration of decentralized storage with encryp-
tion techniques marks a significant paradigm shift [19]. This
approach offers users comprehensive data management aligned
with the Confidentiality, Integrity, and Availability (CIA) triad,
eliminating the need to rely on cloud services as fiduciaries. This
integration unlocks numerous promising applications, including
sovereign data management, decentralized data marketplaces,
and computational operations over encrypted datasets. Although
this paper does not focus on these applications, our decentralized
storage system,Walrus, can naturally function as the storage
layer for encrypted blobs. This approach provides a structured,
layered framework that allows encryption overlays to focus on
creating a secure and efficient Key Management System (KMS)
without worrying about data availability.
In brief, secure decentralized blob stores are critical for all appli-

cations where data is relied upon by multiple mutually distrustful
parties, and needs to stored in a credibly neutral store that provides

2A recent proof of concept attack is described here: https://moxie.org/2022/01/07/web3-
first-impressions.html

1

https://medium.com/@thevalleylife/crypto-terms-explained-exploring-bitcoin-inscriptions-51699dc218d2
https://medium.com/@thevalleylife/crypto-terms-explained-exploring-bitcoin-inscriptions-51699dc218d2
https://medium.com/@thevalleylife/crypto-terms-explained-exploring-bitcoin-inscriptions-51699dc218d2
https://moxie.org/2022/01/07/web3-first-impressions.html
https://moxie.org/2022/01/07/web3-first-impressions.html

The MystenLabs Team

high authenticity, integrity, auditability and availability – all this
at a reasonable cost and low complexity.

Approaches to Decentralized Storage

Protocols for decentralized storage generally fall into two main
categories. The first category includes systems with full replication,
with Filecoin [30] and Arweave [46] serving as prominent examples.
The main advantage of these systems is the complete availability
of the blob on the storage nodes, which allows for easy access and
seamless migration if a storage node goes offline. This setup enables
a permissionless environment since storage nodes do not need to
rely on each other for file recovery. However, the reliability of these
systems hinges on the robustness of the selected storage nodes.
For instance, assuming a classic 1/3 static adversary model and an
infinite pool of candidate storage nodes, achieving “twelve nines” of
security – meaning a probability of less than 10−12 of losing access
to a file – requires storing more than 25 copies on the network3.
This results in a 25x storage overhead. A further challenge arises
from Sybil attacks [16], where malicious actors can pretend to store
multiple copies of a file, undermining the system’s integrity.

The second category of decentralized storage services [23] uses
Reed-Solomon (RS) encoding [32]. RS encoding reduces replication
requirements significantly. For example, in a system similar to
blockchain operations, with𝑛 nodes, of which 1/3may bemalicious,
and in an asynchronous network, RS encoding can achieve sufficient
security with the equivalent of just 3x storage overhead. This is
possible since RS encoding splits a file into smaller pieces, that we
call slivers, each representing a fraction of the original file. Any set
of slivers greater in total size to the original file can be decoded
back into the original file.

However, an issue with erasure coding arises when a storage
node goes offline, and needs to be replaced by another. Unlike fully
replicated systems, where data can simply be copied from one node
to another, RS-encoded systems require that all existing storage
nodes send their slivers to the substitute node. The substitute can
then recover the lost sliver, but this process results in 𝑂 (|blob|)
data being transmitted across the network. Frequent recoveries can
erode the storage savings achieved through reduced replication,
which means that these systems need a low churn of storage nodes
and hence be less permisionless.

Regardless of the replication protocol, all existing decentral-
ized storage systems face an additional challenges: the need for a
continuous stream of challenges to ensure that storage nodes are
incentivized to retain the data and do not discard it. This is crucial
in an open, decentralized system that offers payments for storage
and goes beyond the honest/malicious setting. Current solutions
always assume that the network is synchronous such that the ad-
versary cannot read any missing data from honest nodes and reply
to challenges in time.

IntroducingWalrus

We introduceWalrus, a new approach to decentralized blob storage.
It follows the erasure codes type of architecture in order to scale
to 100s of storage nodes providing high resilience at a low storage
overhead. At the heart of Walrus, lies a new encoding protocol,

3The chance that all 25 storage nodes are adversarial and delete the file is 3−25 =

1.18 × 10−12 .

called Red Stuff that uses a novel two-dimensional (2D) encoding
algorithm that is self-healing. Specificaly, it enables the recovery
of lost slivers using bandwidth proportional to the amount of lost
data (𝑂 (|blob |𝑛) in our case). Moreover, Red Stuff incorporates
authenticated data structures to defend against malicious clients,
ensuring that the data stored and retrieved remains consistent.

One unique feature of Red Stuff is its ability to work in an
asychronous network while supporting storage challenges, making
it the first of its kind. This is only possible thanks to the two-
dimensional encoding that allows for different encoding thresholds
per dimension. The low-threshold dimension can be used from
nodes that did not get the symbols during the write flow to recover
what they missed, whereas the high-threshold dimension can be
used for the read flow to prevent the adversary from slowing down
honest nodes during challenge periods and collecting sufficient
information to reply to challenges.

One final challenge forWalrus, and in general, any encoding-
based decentralized storage system is operating securely across
epochs each managed by a different committee of storage nodes.
This is challenging because we want to ensure uninterrupted avail-
ability to both read and write blobs during the naturally occurring
churn of a permissionless system, but if we keep writing data in the
nodes about to depart, they keep needing to transfer them to the
nodes that are replacing them. This creates a race for the resources
of those nodes, which will either stop accepting writes or fail to ever
transfer responsibility. Walrus deals with this through its novel
multi-stage epoch change protocol that naturally fits the principles
of decentralized storage systems.

In summary, we make the following contributions:

• We define the problem of Asynchronous Complete Data-Sharing
and propose Red Stuff, the first protocol to solve it efficiently
even under Byzantine Faults (Section 3)

• We present Walrus, the first permissionless decentralized stor-
age protocol designed for low replication cost and the ability to
efficiently recover lost data due to faults or participant churn
(Section 4).
• We show howWalrus leverages Red Stuff to implement the

first asynchronous challenge protocol (Section 4.6)
• We provide a production-ready implementation of Walrus and

deploy a public testnet of Walrus. We then measure its perfor-
mance and scalability in a real environment (Section 7).

2 Models and Definitions

Walrus relies on the following assumptions.

Cryptographic assumptions.Throughout the paper, we useℎ𝑎𝑠ℎ()
to denote a collision resistant hash function. We also assume the
existence of secure digital signatures and binding commitments.

Network and adversarial assumptions. Walrus runs in epochs,
each with a static set of storage nodes. At the end of the epoch
𝑛 = 3𝑓 + 1 storage nodes are elected as part of the the storage
committee of the epoch and each one controls a storage shard such
that a malicious adversary can control up to 𝑓 of them.

The corrupted nodes can deviate arbitrarily from the protocol.
The remaining nodes are honest and strictly adhere to the protocol.
If a node controlled by the adversary at epoch 𝑒 is not a part of the

2

Walrus: An Efficient Decentralized Storage Network

Table 1: Comparing Replication Algorithms

Replication for 10−12 Security Write/Read Cost Single Shard Recovery Cost Asychronous Challenges
Replication 25x 𝑂 (𝑛 |𝑏𝑙𝑜𝑏 |) 𝑂 (|𝑏𝑙𝑜𝑏 |) Unsupported
Classic ECC 3x 𝑂 (|𝑏𝑙𝑜𝑏 |) 𝑂 (|𝑏𝑙𝑜𝑏 |) Unsupported
RedStuff 4.5x 𝑂 (|𝑏𝑙𝑜𝑏 |) 𝑂 (|𝑏𝑙𝑜𝑏 |𝑛) Supported

storage node set at epoch 𝑒 + 1 then the adversary can adapt and
compromise a different node at epoch 𝑒 + 1 after the epoch change
has completed.

We assume every pair of honest nodes has access to a reliable
and authenticated channel. The network is asynchronous, so the
adversary can arbitrarily delay or reorder messages between honest
nodes, but must eventually deliver every message unless the epoch
ends first. If the epoch ends then the messages can be dropped.

Our goal is not only to provide a secure decentralized system
but to also detect and punish any storage node that does not hold
the data that it is assigned. This is a standard additional assumption
for dencentralized storage system to make sure that honest parties
cannot be covertly compromised forever.

Erasure codes. As part of Walrus, we propose Asynchronous
Complete Data Storage (ACDS) that uses an erasure coding scheme.
While not necessary for the core parts of the protocol, we also
assume that the encoding scheme is systematic for some of our
optimizations, meaning that the source symbols of the encoding
scheme also appear as part of its output symbols.

Let Encode(𝐵, 𝑡, 𝑛) be the encoding algorithm. Its output are 𝑛
symbols such that any 𝑡 can be used to reconstruct 𝐵. This happens
by first splitting 𝐵 into 𝑡 symbols of size 𝑂 (|𝐵 |𝑡) which are called
source symbols. These are then expanded by generating 𝑛 − 𝑡 repair
symbols for a total of 𝑛 output symbols. On the decoding side,
anyone can callDecode(𝑇, 𝑡, 𝑛) where𝑇 is a set of at least 𝑡 correctly
encoded symbols, and it returns the blob 𝐵.

Blockchain substrate. Walrus uses an external blockchain as
a black box for all control operations that happen on Walrus. A
blockchain protocol can be abstracted as a computational black
box that accepts a concurrent set of transactions, each with an
input message 𝑇𝑥 (𝑀) and outputs a total order of updates to be
applied on the state 𝑅𝑒𝑠 (𝑠𝑒𝑞,𝑈). We assume that the blockchain
does not deviate from this abstract and does not censor 𝑇𝑥 (𝑀)
indefinitely. Any high-performance modern SMR protocol satisfies
these requirements, in our implementation we use Sui [8] and have
implemented criticalWalrus coordination protocols in the Move
smart contract language [7].

3 Asynchronous Complete Data Storage (ACDS)

We first define the problem of Complete Data Storage in a dis-
tributed system, and describe our solution for an asynchronous
network which we refer to as Asynchronous Complete Data Stor-
age (ACDS). Secondly, we show its correctness and complexity.

3.1 Problem Statement

In a nutshell a Complete Data Storage protocol allows a writer to
write a blob to a network of storage nodes (Write Completeness),

and then ensures that any reader can read it despite some failures
and byzantine behaviour amongst storage nodes (Validity); and
read it consistently, despite a potentially byzantine writer (Read
Consistency). More formally:

Definition 1 (Complete Data Storage). Given a network of𝑛 = 3𝑓 +1
nodes, where up to 𝑓 are byzantine, let 𝐵 be a blob that a writer𝑊

wants to store within the network, and share it with a set of readers

𝑅. A protocol for Complete Data Storage guarantees three properties:

• Write Completeness: If a writer𝑊 is honest, then every honest node

holding a commitment to blob 𝐵 eventually holds a part 𝑝 (derived

from 𝐵), such that 𝐵 can be recovered from O
(
|𝐵 |
|𝑝 |

)
parts.

• Read Consistency: Two honest readers, 𝑅1 and 𝑅2, reading a suc-
cessfully written blob 𝐵 either both succeed and return 𝐵 or both

return ⊥.
• Validity: If an honest writer𝑊 successfully writes 𝐵, then an honest

reader 𝑅 holding a commitment to 𝐵 can successfully read 𝐵.

We present the ACDS protocols in a context where the storage
node set is fixed and static. And in subsequent sections describing
its use within Walrus, we discuss how it is adapted to allow for
churn into the committees of storage nodes.

3.2 Strawman Design

In this section, we iterate first through two strawman designs and
discuss their inefficiencies.

Strawman I: Full Replication. The simplest protocol uses full
replication in the spirit of Filecoin [30] and Arweave [46]. The
writer𝑊 broadcasts its blob 𝐵 along with a binding commitment to
𝐵 (e.g.,𝐻𝐵 = ℎ𝑎𝑠ℎ(𝐵)), to all storage nodes and then waits to receive
𝑓 + 1 receipt acknowledgments. These acknowledgments form an
availability certificate which guarantees availability because at least
one acknowledgement comes from an honest node. The writer𝑊
can publish this certificate on the blockchain, which ensures that it
is visible to every other honest node, who can then request a Read(𝐵)
successfully. This achieves Write Completeness since eventually
all honest nodes will hold blob 𝐵 locally. The rest of the properties
also hold trivially. Notice that the reader never reads ⊥.

Although the Full Replication protocol is simple, it requires the
writer to send an O(𝑛 |𝐵 |) amount of data on the network which is
also the total cost of storage. Additionally, if the network is asyn-
chronous, it can cost up to 𝑓 + 1 requests to guarantee a correct
replica is contacted, which would lead to O(𝑛 |𝐵 |) cost per recov-
ering storage node with a total cost of O(𝑛2 |𝐵 |) over the network.
Similarly, even a read can be very inefficient in asynchrony, as the
reader might need to send 𝑓 + 1 requests costing O(𝑛 |𝐵 |).

Strawman II: Encode & Share. To reduce the upfront data dissem-
ination cost, some distributed storage protocols such as Storj [39]

3

The MystenLabs Team

S31

S11

S21

S41

Encode:
from f+1 to nslivers

Figure 1: Encoding a Blob in one dimension. First the blob is

split into 𝑓 + 1 systematic slivers and then a further 2𝑓 repair

slivers are encoded

and Sia [43] use RS-coding [32]. The writer𝑊 divides its blob 𝐵

into 𝑓 + 1 slivers and encodes 2𝑓 extra repair slivers. Thanks to the
encoding properties, any 𝑓 +1 slivers can be used to recover 𝐵. Each
sliver has a size of O(|𝐵 |𝑛). The writer𝑊 then commits to all the
slivers using a binding commitment such as a Merkle tree [27] and
sends each node a separate sliver together with a proof of inclusion4.
The nodes receive their slivers and check against the commitment;
if the sliver is correctly committed, they acknowledge reception
by signing the commitment. The writer𝑊 can then generate an
availability certificate from 2𝑓 + 1 signatures and post it on the
blockchain.

A reader continuously requests slivers from the nodes until it
receives 𝑓 + 1 valid replies (i.e., replies that are verified against
the commitment). The reader is guaranteed to receive them since
at least 𝑓 + 1 honest nodes have stored their sliver. The reader
then reconstructs blob 𝐵 from the slivers and then additionally, re-
encodes the recovered value and recomputes the commitment [10,
27]. If writer 𝑊 was honest, the recomputed commitment will
match the commitment from the availability certificate and the
reader outputs 𝐵. Otherwise, writer𝑊 may not have committed to
a valid encoding, in which case the commitments do not match and
the reader outputs ⊥.

As before, the nodes that did not get slivers during the sharing
phase can recover them by reading 𝐵. If the output of the read
operation is ⊥, the node returns ⊥ on all future reads. Otherwise,
the node stores their encoded sliver and discards the rest of 𝐵. Note
this recovery process is expensive: recovery costs O(|𝐵 |) even if
the storage cost afterwards is O(|𝐵 |𝑛).

This second protocol reduces the dissemination costs signifi-
cantly at the expense of extra computation (encoding/decoding
and committing to slivers from 𝐵). Disseminating blob 𝐵 only costs
O(|𝐵 |)5, which is the same cost as reading it. However, complete
dispersal still costs O(𝑛 |𝐵 |), because as we saw the process of re-
covering missing slivers requires downloading the entire blob 𝐵.
Given that there can be up to 𝑓 storage nodes that did not manage
to get their sliver from writer𝑊 and need to invoke the recov-
ery protocol, the protocol has O(𝑛 |𝐵 |) total cost. This is not only
important during the initial dispersal, but also in cases where the
storage node set changes (at epoch boundaries) as the new set of
storage nodes need to read their slivers by recovering them from
the previous set of storage nodes.

4Writer𝑊 could prove consistency among all slivers, but this is overkill for ACDS.
5There may be an extra O(log𝑛) cost depending on the commitment scheme.

3.3 Final design: Red Stuff

The encoding protocol above achieves the objective of a low over-
head factor with very high assurance, but is still not suitable for
a long-lasting deployment. The main challenge is that in a long-
running large-scale system, storage nodes routinely experience
faults, lose their slivers, and have to be replaced. Additionally, in
a permissionless system, there is some natural churn of storage
nodes even when they are well incentivized to participate.

Both of these cases would result in enormous amounts of data
being transferred over the network, equal to the total size of data
being stored in order to recover the slivers for new storage nodes.
This is prohibitively expensive. We would instead want the system
to be self-healing such that the cost of recovery under churn is
proportional only to the data that needs to be recovered, and scale
inversely with 𝑛.

To achieve this, Red Stuff encodes blobs in two dimensions (2D-
encoding). The primary dimension is equivalent to the RS-encoding
used in prior systems. However, in order to allow efficient recovery
of slivers of 𝐵 we also encode on a secondary dimension. Red Stuff
is based on linear erasure coding (see section 2) and the Twin-code
framework [31], which provides erasure coded storagewith efficient
recovery in a crash-tolerant setting with trusted writers. We adapt
this framework to make it suitable in the byzantine fault tolerant
setting with a single set of storage nodes, and we add additional
optimizations that we describe further below.

Encoding. Our starting point is the second strawman design that
splits the blobs into 𝑓 + 1 slivers. Instead of simply encoding repair
slivers, we first add one more dimension to the splitting process:
the original blob is split into 𝑓 + 1 primary slivers (vertical in
the figure) into 2𝑓 + 1 secondary slivers (horizontal in the figure).
Figure 2 illustrates this process. As a result, the file is now split into
(𝑓 + 1) (2𝑓 + 1) symbols that can be visualized in an [𝑓 + 1, 2𝑓 + 1]
matrix.

Given this matrix we then generate repair symbols in both di-
mensions. We take each of the 2𝑓 + 1 columns (of size 𝑓 + 1) and
extend them to 𝑛 symbols such that there are 𝑛 rows. We assign
each of the rows as the primary sliver of a node (Figure 2a). This
almost triples the total amount of data we need to send and is very
close to what 1D encoding did in the protocol in Section 3.2. In
order to provide efficient recovery for each sliver, we also take the
initial [𝑓 + 1, 2𝑓 + 1] matrix and extend with repair symbols each
of the 𝑓 + 1 rows (of size 2𝑓 + 1) and extend them to 𝑛 symbols
(Figure 2b) using our encoding scheme. This creates 𝑛 columns,
which we assign as the secondary sliver of each node, respectively.

Handling Metadata. For each sliver (primary and secondary),
𝑊 also computes vector commitments over its symbols. For each
primary sliver, the commitment commits to all symbols in the
expanded row, and for each secondary sliver, it commits to all
symbols in the expanded column. As a last step, the client creates
a commitment over the list of these sliver commitments, which
serves as a blob commitment.

These vector commitments for each sliver form the blob meta-

data. Using these, nodes can later, when queried for a single symbol,
prove that the symbol they return is the symbol originally written.
However, these proofs require the opening of the commitments for

4

Walrus: An Efficient Decentralized Storage Network

S31

S11

S21

S41

S32

S12

S22

S42

S33

S13

S23

S43

Encode columns:
from f+1 to n

primary
slivers

(a) Primary Encoding in two dimensions. The file is split into 2𝑓 + 1 columns

and 𝑓 + 1 rows. Each column is encoded as a separate blob with 2𝑓 repair

symbols. Then each extended row is the primary sliver of the respective node.

S14

S24

S11

S21

S12

S22

S13

S23

Encode rows:
from 2f+1 to n

secondary slivers

(b) Secondary Encoding in two dimensions. The file is split into 2𝑓 +1 columns

and 𝑓 + 1 rows. Each row is encoded as a separate blob with 𝑓 repair symbols.

Then each extended columns is the secondary sliver of the respective node.

Figure 2: 2D Encoding / Red Stuff

the respective sliver as well as of the blob commitment w.r.t. the
respective sliver commitment.

A node that holds all of their slivers can easily recompute the
sliver commitment and its openings, but to open the blob commit-
ment, all sliver commitments from all nodes are required.

If we naively replicate this metadata to every single storage node
to enable secure self-healing, we create a large overhead that is
quadratic in the number of nodes, since each node needs to store
the sliver commitments of all nodes. Especially for small blobs, this
can make a large difference in the relative overhead. For example,
using 32B hashes in a system of 1000 nodes would require storing
an additional 64kB on each node, or 64MB in total.

To reduce the overhead, storage nodes maintain an encoded
version of the metadata. Since all storage nodes need to get the
metadata in full when they invoke a write or recovery process,
there is no need for the client to perform the encoding or to do a
2D encoding. Instead, storage nodes can simply locally encode the
metadata with an 1D (f+1)-out-of-n encoding and keep the shard
assigned to them6. This reduces the overhead to a constant per
node, i.e., from quadratic to linear system-wide overhead.

Write protocol. The Write protocol of Red Stuff uses the same
pattern as the RS-code protocol. The writer𝑊 first encodes the
blobs and creates a sliver pair for each node. A sliver pair 𝑖 is the
pair of 𝑖th primary and secondary slivers. There are 𝑛 = 3𝑓 +1 sliver
pairs, as many as nodes.

Then,𝑊 sends all of sliver commitments to every node, along
with their respective sliver pair. The nodes check their own sliver in
the pair against the commitments, recompute the blob commitment,
and reply with a signed acknowledgment. When 2𝑓 + 1 signatures
are collected,𝑊 generates a certificate and posts it on-chain to
certify the blob will be available.

6They should also compute a commitment and an opening proof of their sliver.

In theoretical asynchronous network models with reliable deliv-
ery the above would result in all correct nodes eventually receiving
a sliver pair from an honest writer. However, in practical protocols
the writer may need to stop re-transmitting. It is safe to stop the
re-transmission after 2𝑓 + 1 signatures are collected, leading to at
least 𝑓 + 1 correct nodes (out of the 2𝑓 + 1 that responded) holding
a sliver pair for the blob.

Read Protocol. The Read protocol is the same as for RS-codes.
In order to allow for asychronous challenge nodes only use their
secondary sliver. If this is not necessary, we can use the primary
sliver and have a faster reconstruction threshold of 𝑓 + 1.

𝑅 first collects the metadata, i.e., the list of sliver commitments
for the blob commitment. To do so, 𝑅 requests the 1D encoded
metadata parts from its peers along with the opening proofs.

After the metadata is decoded, 𝑅 checks that the returned set
corresponds to the blob commitment. Then 𝑅 requests a read for
the blob commitment from all nodes and they respond with the
secondary sliver they hold (this may happen gradually to save
bandwidth). Each response is checked against the corresponding
commitments in the commitment set for the blob. When 2𝑓 + 1
correct secondary slivers are collected 𝑅 decodes 𝐵 and then re-
encodes it to recompute the blob commitment and check that it
matches the blob commitment. If it is the same with the one𝑊
posted on chain then 𝑅 outputs 𝐵, otherwise it outputs ⊥.

Sliver recovery. The big advantage of Red Stuff compared to the
RS-code protocol is its self-healing property. This comes into play
when nodes that did not receive their slivers directly from𝑊 try to
recover their sliver. Any storage node can recover their secondary
sliver by asking 𝑓 + 1 storage nodes for the symbols that exist in
their row, which should also exist in the (expanded) column of the
requesting node (fig. 3b and fig. 3c). This means that eventually all
2𝑓 + 1 honest nodes will have secondary slivers. At that point, any
node can also recover their primary sliver by asking the 2𝑓 +1 honest
nodes for the symbols in their column (Figure 3d) that should also
exist in the (expanded) row of the requesting storage node. In each
case, the responding node also sends the opening for the requested
symbol of the commitment of the source sliver. This allows the
receiving node to verify that it received the symbol intended by the
writer𝑊 , which ensures correct decoding if𝑊 was honest.

Since the size of a symbol is O(|𝐵 |
𝑛2) each, and each storage node

will download O(𝑛) total symbols, the cost per node remains at
O(|𝐵 |𝑛) and the total cost to recover the file is O(|𝐵 |) which is
equivalent to the cost of a Read and of a Write. As a result by
using Red Stuff, the communication complexity of the protocol is
(almost7) independent of 𝑛 making the protocol scalable.

Red Stuff is an ACDS. Section 5 provides proofs that Red Stuff
satisfies all properties of a ACDS. Informally, Write Completeness
is ensured by the fact that a correct writer will confirm that at
least 𝑓 + 1 correct nodes received sliver pairs before stopping re-
transmissions. And the sliver recovery algorithm can ensure that
the remaining honest nodes can efficiently recover their slivers
from these, until all honest nodes eventually hold their respective
sliver, or can prove that the encoding was incorrect. Validity holds

7Depends on the commitment scheme used.

5

The MystenLabs Team

S14

S31

S11

S21

S41

S32

S12

S33

S13

S23

S43

(a) Nodes 1 and 3 collectively hold two rows and two columns

S14

S31

S11

S21

S41

S32

S12

S33

S13

S23

S23

S34

(b) Each node sends the intersection of their row/column with the column/row

of Node 4 to Node 4 (Red). Node 3 needs to encode the row for this.

S14

S24

S31

S11

S23

S41

S32

S12

S22

S42

S33

S13

S23

S43

S34

S44

Recover
from f+1

(c) Node 4 uses the 𝑓 + 1 symbols on its column to recover the full secondary

sliver (Green). It will then send any other recovering node the recovered inter-

sections of its column to their row.

S14

S24

S31

S11

S23

S41

S32

S12

S22

S42

S33

S13

S23

S43

S34

S44

Recover from 2f+1

(d)Node 4 uses the 𝑓 +1 symbols on its row aswell as all the recovered secondary

symbols send by other honest recovering nodes (Green) (which should be at

least 2𝑓 plus the 1 recovered in the previous step) to recover its primary sliver

(Dark Blue)

Figure 3: Nodes 1 and 3 helping Node 4 recover its sliver pair

due to the fact that 2𝑓 + 1 correct nodes wil eventually hold correct
sliver pairs, and therefore a reader that contacts all nodes will
eventually get enough slivers to recover the blob. Read Consistency
holds since two correct readers that decode a blob from potentially
different sets of slivers, re-encode it and check the correctness of
the encoding. Either both output the same blob if it was correctly
encoded or both output ⊥ if it was incorrectly encoded.

4 The Walrus Decentralized Secure Blob Store

Walrus is the integration of a blockchain as a control plane for
meta-data and governance, with an encoding and decoding algo-
rithm run by a separate committee of storage nodes handling blob
data contents. This architecture uses the Red Stuff encoding/de-
coding algorithm described in section 3.3, Merkle trees [27] as set
commitments, and the Sui blockchain [8] .Walrus can, however, be
generalized to any blockchains and encoding/decoding algorithm
that satisfies the minimal requirements described in Section 2.

We first describeWalrus flows in a single epoch and then we
discuss howwe allow for storage node dynamic availability through
reconfiguration. Finally, we look into going beyond honest-malicius
and providing storage challenges. During an epoch, the interactions
of Walrus with the clients is through (a) writing a blob and (b)
reading a blob.

4.1 Writing a Blob

The process of writing a blob inWalrus can be seen in Algorithm 3
and Figure 4.

The process begins with the writer (➊) encoding a blob using Red
Stuff as seen in Figure 2. This process yields sliver pairs, a list of
commitments to slivers, and a blob commitment. The writer derives
a blob id 𝑖𝑑𝐵 by hashing the blob commitment with meta-data such
as the length of the file, and the type of the encoding.

Then, the writer (➋) submits a transaction on the blockchain
to acquire sufficient space for the blob to be stored during a se-
quence of epochs, and to register the blob. The size of the blob and

Blockchain

N1

N2

N4

N3

User

4

5

3

1

2

build
blob id

buy
space

collect
acks

publish
PoA

build
PoA

Figure 4: Walrus write flow. The user generates the blob id of the file

they wish to store; acquire storage space through the blockchain; submit the

encoded file toWalrus; collect 2𝑓 + 1 acknowledgements; and submit them as

proof of availability to the blockchain.

blob commitment are sent, which can be used to rederive 𝑖𝑑𝐵 . The
blockchain smart contract needs to secure sufficient space to store
both the encoded slivers on each node, as well as store all metadata
associated with the commitments for the blob. Some payment may
be sent along with the transaction to secure empty space, or empty
space over epochs can be a resource that is attached to this request
to be used. Our implementation allows for both options.

Once the register transaction commits (➌), the writer informs
the storage nodes of their obligation to store the slivers of the blob
identified by 𝑖𝑑𝐵 , sending them the transaction together with the
commitments and the primary and secondary slivers assigned to
the respective storage nodes along with proofs that the slivers are
consistent with the published 𝑖𝑑𝐵 . The storage node verifies the
commitments and responds with a signed acknowledgment over
𝑖𝑑𝐵 once the commitments and the sliver pairs are stored.

6

Walrus: An Efficient Decentralized Storage Network

Finally, the writer waits to collect 2𝑓 + 1 signed acknowledg-
ments (➍), which constitute a write certificate. This certificate is
then published on-chain (➎) which denotes the Point of Availability
(PoA) for the blob inWalrus. The PoA signals the obligation for
the storage nodes to maintain the slivers available for reads for the
specified epochs. At this point, the writer can delete the 𝑏𝑙𝑜𝑏 from
local storage, and go offline. Additionally, this PoA can be used as
proof of availability of the 𝑏𝑙𝑜𝑏 by the writer to third-party users
and smart-contracts.

Nodes listen to the blockchain for events indicating that a blob
reached its PoA. If they do not hold sliver pairs for this blobs they
execute the recovery process to get commitments and sliver pairs
for all blobs past their PoA. This ensures that eventually all correct
nodes will hold sliver pairs for all blobs.

4.2 Reading a Blob

In the read path, a reader may ask any of the storage nodes for
the commitments and secondary sliver (1) for a blob by 𝑖𝑑𝐵 . Once
they collect 2𝑓 + 1 replies with valid proofs against 𝑖𝑑𝐵 (2) they
reconstruct the blob. Then (3) the reader re-encodes the blob and
re-computes a blob id 𝑖𝑑′

𝐵
. If 𝑖𝑑𝐵 = 𝑖𝑑′

𝐵
it outputs the blob, otherwise

the blob is inconsistent and the reader outputs ⊥.
Reads happen consistently across all readers thanks to the prop-

erties of Red Stuff. When no failures occur, reads only require
downloading sliver data slightly larger than the byte length of the
original blob in total.

4.3 Recovery of Slivers

One issue with writing blobs in asynchronous networks or when
nodes can crash-recover is that not every node can get their sliver
during the Write. This is not a problem as these protocols can func-
tion without completeness. Nevertheless, inWalrus we opted to
use a two-dimensional encoding scheme because it allows for com-
pleteness, i.e., the ability for every honest storage node to recover
and eventually hold a sliver for every blob past PoA. This allows (1)
better load balancing of read requests all nodes can reply to readers,
(2) dynamic availability of storage nodes, which enables reconfigu-
ration without needing to reconstruct and rewrite every blob, and
(3) the first fully asynchronous protocol for proving storage of parts
(described in Section 4.6).

All these benefits rely on the ability for storage nodes to recover
their slivers efficiently. The protocol closely follows the Red Stuff
recovery protocols illustrated in Figure 3. When a storage node sees
a certificate of a blob for which they did not receive slivers, it tries
to recover its sliver pair from the rest of the storage nodes. For this,
it requests from all storage nodes the symbols corresponding to the
intersection of the recovering node’s primary/secondary sliver with
the signatory nodes’ secondary/primary slivers. Given that 2𝑓 + 1
nodes signed the certificate, at least 𝑓 + 1 will be honest and reply.
This is sufficient for all 2𝑓 + 1 honest nodes to eventually hold their
secondary slivers. As a result, when all honest nodes hold their
secondary slivers, they can share those symbols corresponding to
the recovering nodes’ primary slivers, who will then get to the
2𝑓 + 1 threshold and also recover their primary sliver.

4.4 Handling Inconsistent Encoding from

Malicious Writers

One last case we need to discuss is when the client is malicious
and uploads slivers that do not correspond to the correct encoding
of a blob. In that case, a node may not be able to recover a sliver
that is consistent with the commitment from the symbols that it
received. However, in this case it is guaranteed to generate a third
party verifiable proof of inconsistency, associated with 𝑖𝑑𝐵 .

The read process executed by a correct reader rejects any incon-
sistently encoded blob by default, and as a result sharing this proof
is not a necessity to ensure consistent reads. However agreeing
on the inconsistency allows nodes to delete this blobs’ data and
excluding it from the challenge protocol (section 4.6). To prove
inconsistency, the storage node shares the inconsistency proof—
consisting of the symbols that it received for recovery and their
inclusion proofs—with the other nodes who can verify it by per-
forming a trial recovery themselves. After verifying this fraud proof,
the node attests on-chain that 𝑖𝑑𝐵 is invalid. After observing a quo-
rum of 𝑓 + 1 such attestations, all nodes will subsequently reply
with ⊥ to any request for the inconsistent blob’s slivers, along with
a pointer to the on-chain evidence for the inconsistency.

4.5 Committee Reconfiguration

Walrus is a decentralized protocol, hence it is natural that the
set of storage nodes will fluctuate between epochs. When a new
committee replaces the current committee between epochs, recon-
figuration takes place. The goal of the reconfiguration protocol
is to preserve the invariant that all blobs past PoA are available,
no matter if the set of storage nodes changes. Subject of course
to 2𝑓 + 1 nodes being honest in all epochs. Reconfiguration may
take hours if a significant amount of data needs to be transferred
between nodes. In that period,Walrus must continue to perform
reads and writes for blobs to ensure no downtime.

Core Design. At a high-level the reconfiguration protocol of Wal-
rus is similar to the reconfiguration protocols of blockchain sys-
tems, since Walrus also operates in quorums of storage nodes.
However, the reconfiguration of Walrus has its own challenges
because the migration of state is orders of magnitude more expen-
sive than classic blockchain systems. The main challenge is the
race between writing blobs for epoch 𝑒 and transferring slivers
from outgoing storage nodes to incoming storage nodes during
the reconfiguration event between 𝑒 and 𝑒 + 1. More specifically,
if the amount of data written in epoch 𝑒 is greater than the ability
of a storage node to transfer them over to the new storage node,
then the epoch will never finish. This problem is exacerbated when
some of the outgoing storage nodes of 𝑒 are unavailable, as this
means that the incoming storage nodes need to recover the slivers
from the committee of epoch 𝑒 . Fortunately, by using Red Stuff,
the bandwidth cost of the faulty case is the same as that of the
fault-free case. but it still requires more messages to be sent over
the network and more computation to verify proofs and to decode
symbols to slivers.

To resolve this problem without shutting off the write path, we
take a different approach by requiring writes to be directed to the
committee of 𝑒 + 1 the moment the reconfiguration starts, while
still directing reads to the old committee, instead of having a single

7

The MystenLabs Team

point at which both reads and writes are handed over to the new
committee. This can unfortunately create challenges when it comes
to reading these fresh blobs, as during the handover period it is
unclear which nodes store the data. To resolve this, we include in
the𝑚𝑒𝑡𝑎𝑑𝑎 of every 𝑏𝑙𝑜𝑏 the epoch in which it was first written.
If the epoch is 𝑒 + 1 then the client is asked to direct reads to the
new committee; otherwise, it can direct reads to the old committee.
This happens only during handover period (when both committees
need to be live and secure).

Once a member of the new committee has bootstrapped their
part of the state, i.e., they have gotten all slivers for their shard, they
signal that they are ready to take over. When 2𝑓 + 1 members of
the new committee have signaled this, the reconfiguration process
finishes and all reads are redirected to the storage nodes of the new
committee.

Security arguments: In a nutshell, reconfiguration ensures all
ACDS properties across epochs. The key invariant is: the reconfig-
uration algorithm ensures that if a blob is to be available across
epochs, in each epoch 𝑓 +1 correct storage nodes (potentially differ-
ent ones) hold slivers. This is the purpose of the explicit signaling
that unlocks the epoch change by 2𝑓 + 1 nodes. Therefore, even-
tually all other honest storage nodes can recover their sliver pairs,
and in all cases, 𝑓 + 1 honest nodes in the next epoch are able to
recover correct sliver pairs as a condition to move epochs.

4.6 Storage Challenges

Walrus uses a challenge protocol to prevent cheating nodes that
trivially never store or serve data from receiving rewards and to
incentivize honest nodes. To the best of our knowledge, we present
here the first storage proof protocol to make no assumptions about
network synchrony. It leverages the completeness property of Red
Stuff and the ability to reconstruct blobs with 2𝑓 + 1 threshold. In
this section, we first present the simple protocol that is theoretically
secure but costly. Then we discuss a relaxation that makes the se-
curity probabilistic but reduces the cost of challenging significantly
and can be tuned dynamically if reads start to fail.

Fully Asynchronous Challenge Protocol. Close to the end of the
epoch, the storage nodes witness a “challenge start” event on-chain,
such as a specific block height. At that point, they stop serving read
and recovery requests and broadcast an acknowledgment. When
2𝑓 +1 honest nodes have entered the challenge phase, the challenges
start.

Every challenged node sends the common symbols per blob to
each other along with a proof against the commitment of the writer
of the blob. The receiving nodes check the symbols and send a
confirmation signature. When the proving storage node collects
2𝑓 + 1 signatures, it forms a certificate, which it submits on-chain.
When 2𝑓 + 1 certificates are valid, the challenge period ends, and
the reads and recovery are re-enabled.

During the challenge period, the nodes that witnessed the chal-
lenge start message do not respond to read or recovery requests.
Since the threshold for starting a challenge is 2𝑓 + 1, at least 𝑓 + 1
honest will not reply after the challenged files are determined. As
a result, even if the adversary has 𝑓 slivers stored and has slowed
down 𝑓 honest nodes to not see the challenge start message, it
can only get 2𝑓 symbols from their secondary slivers and then 2𝑓

signatures on its certificate. These are not enough to recover the
full secondary sliver and convince the rest of the honest nodes to
sign the certificate, and as a result, it will fail the challenge. The
proof can be seen in Section 5.4.

Relaxations. Although this protocol is secure, it has the caveat
that no reads are served during the challenge period and that a full-
blown challenge requires bandwidth equal to the amount stored. To
reduce its impact, we plan to trade-off security for allowing most
blobs to be readable and not under a challenge.

For the lighweight challenge protocol, we require the storage
nodes to setup a random coin with a 2𝑓 +1 reconstruction threshold.
This is possible using any kind of asynchronous DKG [13, 14, 20]
or randomness generation protocol [17, 40].

The coin is used to seed a pseudo-random function (PRF) that
defines which blobs need to be challenged per storage node. Any
blob not in the set can be accessible directly again. The number
of blobs challenged needs to be sufficiently large compared to the
total number of blobs such that storage nodes have a negligible
probability of holding all the challenged blobs unless they hold the
overwhelming majority of blobs. For example, if a storage node
holds 90% (99%) of the blobs, it has less than a 10−30 probability of
success in a 640 (7000) file challenge.

If we notice that reads fail although challenges pass, it means that
we do not challenge enough files. In this case,Walrus will increase
the challenges up to the point of reenabling the full challenge
protocol. However, for this to happen, it means that the malicious
storage nodes have minimal storage savings (less than a constant
factor), which is unlikely to have a real impact on their resource
cost.

5 Red Stuff and Walrus Proofs

This section completes Section 3 by showing that Red Stuff satis-
fies all the properties of a ACDS. The casual reader can skip it.

5.1 Write Completeness

We show that Red Stuff satisfies Write Completeness. Informally,
if an honest writer writes a blob 𝐵 to the network, every honest
storage node eventually holds a primary and secondary correctly
encoded sliver of 𝐵. For this part we assume the writer is honest
and provides a correct vector commitment𝑀 .

Lemma 1 (Primary Sliver Reconstruction). If a party holds a set

of (2𝑓 + 1) symbols {𝐸 (𝑖, ∗)}2𝑓 +1from a primary sliver 𝑆 (𝑝,𝑖) , it can

obtain the complete primary sliver 𝑆 (𝑝,𝑖) .

Proof. The proofs directly follows from the reconstruction
property of erasure codes with reconstruction threshold (2𝑓 +
1). □

Lemma 2 (Secondary Sliver Reconstruction). If a party holds a set

of (𝑓 + 1) symbols {𝐸 (∗, 𝑖)}𝑓 +1 from a secondary sliver 𝑆 (𝑠,𝑖) , it can

obtain the complete secondary sliver 𝑆 (𝑠,𝑖) .

Proof. The proofs directly follows from the reconstruction
property of erasure codes with reconstruction threshold (𝑓 +1). □

Theorem 1. Red Stuff satisfies Write Completeness (Definition 1).

8

Walrus: An Efficient Decentralized Storage Network

Proof. To write a blob 𝐵, an honest writer𝑊 sends at least
(2𝑓 + 1) correctly encoded slivers (parts) to different storage nodes,
along with a binding vector commitment𝑀 over those slivers. For
these nodes the property holds by definition. Now let’s assume a
node 𝑗 that is not in the initial 2𝑓 + 1 recipients. The node will ask
every node 𝑖 for their shared symbols in its primary (i.e., 𝐸 (𝑗, 𝑖)) and
secondary (i.e., 𝐸 (𝑖, 𝑗)) sliver. Given the binding vector commitment
𝑀 node 𝑖 can either send the true symbols or not reply. Given that
at least 2𝑓 + 1 nodes acknowledged𝑀 then 𝑗 will get 𝑓 + 1 correct
symbols for its primary sliver {𝐸 (𝑗, ∗)}𝑓 +1 and 𝑓 +1 correct symbols
for its secondary sliver {𝐸 (∗, 𝑗)}𝑓 +1. From Lemma 2 this means that
𝑗 will reconstruct its full secondary sliver 𝑆 (𝑠,𝑗) .

Since this reasoning applies to any generic node 𝑖 , it holds for all
nodes. As a result, eventually all 2𝑓 +1 honest nodes will reconstruct
their secondary slivers 𝑆 (𝑠,∗) . Every time a node reconstructs their
secondary sliver, they also reply to node 𝑗 with the shared symbol
which is part of the primary sliver of 𝑗 (i.e., 𝐸 (𝑗, ∗)) . As a result,
eventually 𝑗 will go from {𝐸 (𝑗, ∗)}𝑓 +1 to {𝐸 (𝑗, ∗)}2𝑓 +1 This allows
node 𝑗 to apply Lemma 1 and reconstruct its primary sliver 𝑆 (𝑝,𝑗) .

Since this reasoning applies to any generic node 𝑖 , it holds for all
nodes and concludes the proof that all honest nodes will eventually
hold both their primary and secondary sliver.

□

5.2 Read Consistency

We prove that Red Stuff satisfies Read Consistency. Informally,
if two honest readers read a blob 𝐵 written to the network, they
either both eventually obtain 𝐵 or both eventually fail and obtain
⊥.

Theorem 2. Red Stuff satisfies Read Consistency (Definition 1).

Proof. Notice that the encoding scheme is deterministic and
the last step of reading is to re-run the encoding and reconstruct
𝑀 . As a result, a reader that accepts the read as correct needs to
output 𝐵.

The challengewith Read Consistency is if thewriter can convince
different readers that collect different slivers to output 𝐵 and ⊥.
Let’s assume that two honest readers 𝑅1 and 𝑅2 read a blob 𝐵 from
the network and 𝑅1 eventually obtains 𝐵 while 𝑅2 eventually fails
and obtains ⊥.

There are two scenarios for 𝑅2 to output ⊥:
(1) 𝑅2 gets 2𝑓 + 1 replies matching 𝑀 and tries to reconstruct.

During reconstruction, the commitment does not much𝑀

(2) Some node failed to reconstruct their secondary sliver. By the
algorithm this nodes will hold a proof of inconsistency, which
it will send to 𝑅2
In either scenario 𝑅1 during their reconstruction should have

also detected the inconsistency and output ⊥ otherwise the bind-
ing property of the vector commitment does not hold. Hence a
contradiction.

□

5.3 Validity

We prove that Red Stuff satisfies Validity. Informally, if an honest
writer writes a correctly encoded blob 𝐵 to the network, every
honest reader eventually obtains 𝐵.

Theorem 3 (Validity). Red Stuff satisfies Validity (Definition 1).

Proof. Towrite a blob 𝐵, an honest writer𝑊 construct𝑛 correct
encoded slivers (parts) along with a binding vector commitment𝑀
over those slivers. Since the writer is honest from Theorem 1 all (at
least 2𝑓 + 1) honest storage nodes will hold their respective slivers.
Let’s note by nodes the entire set of storage nodes. An honest
reader queries each storage node 𝑛 ∈ nodes for their secondary
sliver, verifies them against𝑀 and when it holds 2𝑓 + 1 uses them
to reconstruct the 𝐵. Since all honest storage nodes will eventually
reply to the reader and𝑊 was honest, the reader will eventually
obtain 𝐵. □

5.4 Asychronous Challenges

We prove that no malicious storage node that does not hold all
slivers of blobs will succeed in replying to a challenge. We note
that storage nodes of the adversary can collude and hold a single
version of their common symbols. However, they would still need
to hold 2𝑓 + 1 symbols per sliver which is effectively the cost of a
full sliver as far as storage is concerned.

Theorem 4 (Secure Challenge Protocol). No malicious storage node

running Walrus that does not hold all slivers of blobs will succeed in

replying to a challenge.

Proof. We assume there exists a storage node that deletes a
symbol it is supposed to hold and the respective symbol is held by
an honest node. At challenge time it will need to send this symbol to
the honest node to get a certificate. To do so, it will need to recover
the sliver. For this it will get 𝑓 − 1 symbols from the other malicious
storage nodes. It can also get 𝑓 symbols from slow, honest nodes
through the read path. However 𝑓 + 𝑓 − 1 = 2𝑓 − 1. From lemma 1
the node need 2𝑓 + 1 to reconstruct the primary sliver and get this
symbol. Hence it will fail to reply.

If it fails to reply then it cannot get a certificate as only the
2𝑓 −1 node mentioned above plus its self-signature will be collected,
resulting in 2𝑓 < 2𝑓 + 1 signatures.

□

6 Economics and Incentives

Beyond simple reads and writes, we design robust economic and
incentive mechanisms forWalrus to ensure competitive pricing,
efficient allocation of resources, and minimal adversarial behavior.
Conceptually,Walrus’s economic challenges differ from those of
a typical blockchain, since Walrus leverages a blockchain as a
control plane, and hence inherits the security of the blockchain
consensus.

Instead,Walrus faces challenges around enforcing long-term
contracts.Walrus nodes and users strike agreements in advance
to store data for some duration of time and provide access to that
data in the future. But nodes may be tempted to default over time,
e.g. resell committed storage at higher prices to other users or
withhold later access unless ransoms are paid. Moreover, given
that Walrus is decentralized nodes may simply churn from the
system over time and leave it to future committees of nodes to
fulfill their commitments without even fully internalizing future
reputation costs when acting in their own interests, as the well-
known “tragedy of the commons" problem. Unlike in traditional
markets, where long-term contracts can be enforced through the

9

The MystenLabs Team

legal system,Walrus has to rely on incentives and disincentives
to mitigate this.

The primary tool that ensures contracts are honored is staked
capital – oriented around the new WAL token – which earns re-
wards for good behavior and is slashed for bad behavior. This capital
can come from the nodes directly, or it can come from users who
delegate their capital to well-run nodes. In tandem, the economics
behind Walrus continues to assume that up to 𝑓 = ⌊𝑛3 ⌋ nodes
(or, more accurately, nodes controlling up to ⌊𝑛3 ⌋ of the shards)
are Byzantine, building robustness for arbitrary failures including
malicious actions. Finally, this principal tool is paired with other
mechanisms to coordinate pricing, access, migrations, and integrity
checks in the system.

This section proceeds as follows. Section 6.1 describes the staking
mechanism that underpins the security and efficiency of the entire
system. Section 6.2 outlines the migration of shards, when new
nodes join the system (or increase relative stake) or existing nodes
exit the system (or decrease relative stake). Section 6.3 explains how
nodes collectively set prices in competitive and fair ways. Finally,
Section 6.4 briefly explains the token governance processes.

6.1 Staking

Staking of WAL tokens, by or on behalf of storage nodes, underpins
Walrus’s security. By earning rewards when storage nodes honor
commitments and being slashed when nodes do not. Staking on
Walrus has four core components: assignment of stakes and shards,
the unstaking process, the accrual of rewards and penalties, and
the adjustments needed for self-custodial objects.

Stake and Shard Assignment. Walrus includes an in-built layer
of delegated staking, so that users can participate in the network’s
security regardless of whether they operate storage services directly.
Nodes compete with one another to attract stake from users, which
in turn governs the assignment of shards to them.

Users make this choice based on the storage node’s reputation,
the node’s own staked capital, the commission rates set, and other
factors. Once the epoch is set to change, i.e. point 𝑐 in Figure 5,
the stake is considered locked in its assignment to storage nodes
(and any unstaking requires the formal unstaking process described
next). Shards are now assigned to nodes for the upcoming epoch
in proportion to the nodes’ associated stakes. This is described in
more detail in Section 6.2.

Walrus does not impose requirements on storage nodes to pro-
vide some minimal level of capital, allowing nodes to choose be-
tween funding some, all, or none of its own capital. This is deliberate.
Delegators will likely consider a nodes’ own capital when making
delegation decisions, butWalrus need not be prescriptive of the
required level.

Walrus does impose one safeguard on commission rates: they
must be set by nodes a full epoch before the cutoff point. As such, if
a node raises commission rates too far, its delegators have sufficient
time to unstake before those new rates go into effect.

Unstaking. The unstaking process is similar to the staking pro-
cess, in that a wallet must register the request before the cutoff
point in a given epoch (point 𝑐 in Figure 5). Once the cutoff point is
reached, the departing stake no longer counts towards the node’s
aggregate stake for allocating shards. However, the departing stake

is not released at that point. Instead, the departing stake is held by
Walrus through the shard migration process described in Section
6.2, which takes place after the epoch ends; and its value can be
slashed if the shard migration procedures involving its node fail.
The departing stake is subsequently released. If the node is not in-
volved in shard migration processes, the departing stake is released
at the end of the epoch instead. Walrus again imposes no further
requirements on the process.8

Rewards and Penalties. At the end of each epoch, a node earns
rewards or is punished based on its actions throughout the epoch.
Nodes that have answered challenges (Section 4.6) correctly and
thus have proven data storage, have facilitated writes to the system,
or have participated in recovery of shards earn rewards. Nodes
that have not answered challenges correctly are penalised. These
reward and penalty rates are based on a combination of protocol
revenue and parameters tuned by token governance, and they are
discussed later. In addition, penalties on nodes around the recovery
process for shards are levied earlier, at the end of the migration
period. This allows capital that wishes to unstake from the system
to be potentially slashed and complete the exit.

Users share in rewards and penalties on a proportionate basis, for
the full epochs that their stakes are active. Storage nodes themselves
can bring their own capital to earn similar rewards and penalties;
and storage nodes separately earn commissions from the rewards
that they bring to their delegators. Initially Walrus will treat all
stake equivalently, such that there are no junior or senior stake
tranches, and all stakes earn rewards and penalties at the same
rate. This can be changed in the protocol later, at the community’s
discretion; or it can be built as custom functionality on top of
Walrus by a given node.

Self-Custody in Staking. Like Sui [7], Walrus will implement
staking via self-custodied objects. When a wallet stakes funds, those
funds are wrapped into an object that the wallet holds. This lowers
the vulnerability surface for theWalrus system, and it allows users
to build functionality atop those objects. However, this poses an
operational problem, asWalrus can slash staking principal but this
design means thatWalrus does not actually hold custody of the
principal.

To solve this, Walrus keeps track of any outstanding penalties.
When a user wants to reclaim their WAL tokens, they must provide
the object to the Walrus smart contracts to have those tokens un-
wrapped. At the point of unwrapping, those outstanding penalties
are assessed on the stake.

This leads to two problems. First,Walrus may face an interim
cash flow problem, especially since penalties are sometimes given
to other participants to offset the harm imposed on them by the
slashed node. Thus, Walrus has two mitigations. The first mit-
igation is that penalties come out of any rewards being paid to
stake, including both byWalrus reclaiming uncollected rewards
and garnishing future reward distributions. The second mitigation
is that outstanding penalties accrue with interest over time, until

8One potential extension for Walrus is to impose an extra epoch delay for a node
withdrawing its own capital. This prevents outcomes where the node unstakes its own
capital in the last few seconds before an cutoff, and thus withdraws all their capital a
full epoch before its delegators, presumably in anticipation of adversarial behavior
during that epoch. This mirrors the extra epoch delay for nodes setting commission
rates.

10

Walrus: An Efficient Decentralized Storage Network

Figure 5: Timeline of Walrus Operations

Epoch 𝐸 Epoch 𝐸 + 1

Epoch Change Epoch Duration Epoch Change Epoch Duration

Staking and Voting for 𝐸 + 1 Staking and Voting for 𝐸 + 2
𝑐 𝑐

the wallet chooses to settle either by sending tokens directly to
Walrus or by unstaking and paying at the point of unwrapping.

Second, objects slashed to zero or near-zero may not be returned
by their owners toWalrus, keepingWalrus from claiming those
tokens. Thus, Walrus will always redeem a staking object for
some baseline amount (e.g. 5%) of its initial principal, regardless of
the magnitude of slashing. This small incentive for users should
motivate them to return all staked objects to Walrus eventually
for unwrapping, and allowWalrus to reclaim the slashed tokens.

6.2 Shard Migration

Shards migrate between nodes as their relative stake rises and falls.
This migration is important for Walrus’s security, as otherwise
Byzantine behavior in a minority of nodes by stake could halt the
system. Shard migration has three components: the assignment
algorithm, the cooperative pathway of migration, and the recovery
pathway.

Assignment Algorithm. Once the cutoff point prior to an epoch’s
conclusion is reached (i.e. point 𝑐 in Figure 5), the assignment
algorithm proceeds. Staking requests are considered finalized and
the associated stake is included; and unstaking requests are similarly
considered finalized and the associated stake is excluded (though
not released). Shards are assigned on the basis of relative stake
across nodes. However, the shard transfer process does not formally
begin until the start of the next epoch.

The shard assignment algorithm maintains stability between
nodes and shards where possible, and so tries to minimize transfers.
Specifically, nodes that gain shards keep all their current shards
and only gain extra shards lost by other nodes. In addition, there is
some tolerance when losing a shard, such that a node that just earns
an extra shard by having some 𝜖 extra stake will not immediately
lose the shard if it loses that 𝜖 stake in a subsequent epoch.

In future iterations, the shard assignment algorithm can be made
more accommodating, e.g. allowing nodes to specify preferences for
shards that the assignment algorithm respects, or allowing nodes to
trade migration obligations as long as the protocol’s overall shard
allocation is respected. For instance, nodes that co-locate storage
racks might prefer to transfer shards with one another to save on
ingress and egress charges (as many storage providers do not charge
for intra-facility transfers). Alternatively, if two nodes are migrating
one shard each to two other nodes, the four parties can mutually
agree to swap obligations for efficiency purposes (perhaps proposed
by a third party optimizing transfer costs forWalrus holistically;
and perhaps facilitated in turn by side payments between the four
parties).

Assignment is done solely on the basis of stake disregarding a
storage node’s storage limit. In other words, a node may be forced to
take shards beyond its storage capacity, if its relative stake increases

through an influx of stake or an outflow for competitors’ stake.9
This is why the assignment algorithm is run prior to the epoch’s
conclusion, to allow nodes in this position to have enough time to
provisionmore storage. In addition, nodes can always choose to halt
new staking requests, if they wish to lower the risk of provisioning
new storage on short notice.

Cooperative Pathway. The shard migration process begins once
the epoch ends. It begins with a period of time where nodes are
expected to transfer shards. If this is done cooperatively, i.e. the
sending node and receiving node coordinate, then no tokens change
hands and no further action is taken.

Specifically, for each bilateral relationship of (sender, receiver),
the receiver attests to having the shards during the transfer inter-
val. The process is then considered complete, and the receiver is
responsible for future challenges to the shards. Once each bilateral
transfer a node is involved with finishes, the unstaking requests
for that node (if any) are processed.

This mechanism nests a voluntary node exit from the system.
The node would mark its entire stake to be withdrawn, cooperate in
migrating out shards, and then reclaim all tokens once the receivers
attest.

Recovery Pathway. Since Walrus is an open system, it needs to
be robust to failures in the shard migration. If, at the end of the
transfer interval, the receiving nodes either attest to not having
received all shards or do not attest, the transfer is considered failed
and the recovery pathway is initialized.

Under the recovery pathway, the sending node’s stake is slashed
meaningfully, with a penalty amount set by governance. All other
nodes participate in recovering the shard (4.3), and the slashed
funds are divided amongst them to offset their costs. Importantly,
the receiving node’s stake is also slashed. It is slashed by a relatively
small amount, also set by governance, to set incentives correctly
on not misreporting a cooperative migration. Once recovery is
complete, the receiving node is responsible for challenges to the
shards.10

Non-Migration Recovery. The recovery pathway in Walrus is
primarily for shard migrations, but it can also be used for recovery

9An alternate model is to assign shards on the basis of a node’s stake and self-declared
storage capacity. This model is more robust in terms of individual choices and incen-
tives, but it is more complex operationally. For instance, this model would require
Walrus to slash nodes that reduce storage capacity beyond the amount of storage
already committed to users, and potentially use those slashed funds to subsidize other
nodes who offset the declines.
10This mechanism handles nodes withdrawing from Walrus under many adversarial
scenarios, but it does so inelegantly for a scenario with a fully unresponsive node.
A fully unresponsive node would eventually lose its shards through penalties levied
on its stake, but that process would be gradual and take many epochs, constraining
Walrus in the meantime. One possible idea for future development is forWalrus to
build an emergency migration system that confiscates all shards for a node that fails a
supermajority of data challenges in several consecutive epochs.

11

The MystenLabs Team

outside of migrations (e.g. a node who suffers physical damage to a
hard drive). In this flow, the node missing a shard voluntarily places
a request on chain and is slashed by the same penalty amount that
the sending node pays during shard migration recovery. A node
might do this voluntarily because the alternative is for the node to
repeatedly fail the data availability challenges in Section 4.6 before
eventually needing to migrate away the shard, which would be
more costly. Nodes who participate in the recovery of the missing
shard earn these slashed funds, to offset their costs.

In addition, nodes can perform ad-hoc recovery of blobs from
one another. These are on a best-effort basis only, and nodes are
free to rate limit one another. This pathway handles particular blobs
that are missing (especially from recent epochs), but it likely does
not scale to entire missing shards.

6.3 Payments for Storage and Writes

Given the distributed nature of Walrus, storage resources and
writes must be priced in competitive and collaborative ways. Stor-
age nodes should compete with one another to offer ample storage
at low prices, but the system must then jointly represent their sub-
missions as a unified schedule to storage consumers. This section
covers the preliminaries of storage resources, how nodes determine
the quantity of storage resources, how nodes determine the prices
of storage resources and writes, and the payments made to nodes.

Storage Resources. Storage is bought and sold on Walrus as
storage resources, represented on the Sui blockchain. These act as
reservations for storage space inWalrus, and accordingly have a
starting epoch, an ending epoch, and a size. Users register resources
to hold specific blobs when ready to store data, and proceed to write
the data and establish the Point of Availability.

Prior to being attached to a blob, storage resources can be split
across time or across space. Storage resources can also be traded.
Finally, storage resources can be disassociated from a deleted blob
and reassociated with a new blob. This establishes the foundation
for a robust secondary market for storage resources, which allows
for economic efficiency inWalrus.

Storage Quantity. Nodes first determine storage for sale by voting
on the system-wide shard size. Given the fixed number of shards
and the replication factor, this immediately determines the system
total size; and so, by extension, the unused storage that is available
for sale.

Like staking, voting for storage quantities and prices alike takes
place in advance of the epoch. The cutoff point for staking is the
same cutoff point for voting (i.e. point 𝑐 in Figure 5). Storage nodes
that do not vote simply have their previous vote populated as their
current vote. At that point, all submissions for shard size are ordered
in decreasing order and the 66.67th percentile (by stake weight)
submission is determined to be the shard size, such that 2/3 of
submissions are for larger shard sizes and 1/3 of submissions are
for smaller shard sizes.

At this point, unused storage, i.e. the difference between total
storage capacity and storage already committed, is calculated. If
there is any unused storage, it goes on sale in the upcoming epoch
and starts in that epoch. Users specify an ending epoch (between
the current epoch and an epoch two years out) and a size when
making the purchase, creating a storage resource. The upper bound

on the ending epoch is to prevent early generations of nodes from
making choices that lock in too many successive generations of
nodes. If total storage capacity is lower than committed storage,
no new storage is available for sale but Walrus nodes are still
required to honor the commitments made. They cannot delete
storage resources, as they will fail challenges and be slashed, as
described in Section 4.6.

Although storage is generally sold as resources that start in
the current epoch,Walrus allows one alternate flow to facilitate
renewals of existing blobs efficiently. Users with existing blobs
can extend the lifespan of those blobs from their current ending
epoch to any later epoch (up to two years’ out) and pay the posted
price for the additional epochs. Renewing parties enjoy a small
embedded option, as prices for the next epoch are set midway
through the current epoch and when current storage is on sale at
current epoch prices. This is minor as long as prices are generally
stable in successive epochs. This model allows users to have long-
lived or potentially infinite storage lifetimes for their data without
lapsing coverage or double-paying for epochs.

Pricing of Storage and Writes. Nodes set the shard size, but also
the prices for storage and for writes. Again, over a full epoch in
advance and before the cutoff point 𝑐 in Figure 5, nodes submit
prices for storage resources (on a per unit of storage, per epoch
basis) and for writes to the system (on a per unit of storage basis).
These prices are independently ordered in ascending order, and the
66.67th percentile (by stake weight) submissions are selected, such
that 2/3 of submissions are for lower prices and 1/3 of submissions
are for higher prices.11 The storage price is taken as is, while the
write price is multiplied by a hardcoded factor greater than one.

This hardcoded factor reflects an additional refundable deposit.
Walrus formally is responsible for a blob once the Point of Avail-
ability is publicly visible on-chain. However, Walrus runs more
efficiently if all nodes receive the blob directly from the user, as it
saves the overhead needed to recover missing symbols for the nodes
missing the data. The refundable deposit on writes incentivizes this.
The more node signatures that a user collects on its certificate, the
more of that deposit is returned. As such, a user is motivated to
upload the data to all nodes and not simply 2𝑓 + 1 of them.

Payments to Nodes. Payments are simple forWalrus at launch.
First, users pay the current price for writing data when registering
the blob, and those are distributed to nodes at the end of the epoch.
Second, users pay for the storage resource at the time of purchase
(regardless of when they register the blob). Here, theWalrus smart
contracts divide these tokens amongst shard-level buckets for the
associated nodes to receive at the end of the epoch.

This simple model of payments for storage resources delivers
two core benefits. First, user prices are fixed and prepaid. Users do
not need to worry about fluctuations in the price of storage or the
WAL token during the lifetime of the contract, and nodes cannot ex-
ert predatory pricing on users midway through a contract. Second,
contract lengths are fixed and users cannot exit them without for-
feiting their payment. Without this, nodes could not lower prices on
storage in the future without risking all existing contracts canceling

11This resembles the model behind Sui gas fees. As a brief reminder, Sui validators
propose reference prices and the 66.67th percentile price is selected. Sui separately
allows validators to assess each others’ performance subjectively, which is analogous
to the data challenges in Walrus outlined in Section 4.6.

12

Walrus: An Efficient Decentralized Storage Network

and renewing at the lower rate. Thus, the long-term enforcement
on both sides delivers stability to the relationship.

This model does have two weaknesses, and so Walrus may
add refinements later. First, this is capital-inefficient, as users must
prefund the entire contract well in advance of receiving services.
Second, nodes often have local currency costs but receive WAL
revenues, and so fluctuations in the price of WAL will make it hard
for them to compete efficiently. Thus, an alternate model could be
one where users and nodes commit to long-term contracts, but with
two differences. The first difference is that users only prepay for the
last few epochs’ of storage rather than the full contract, allowing
them to be more capital-efficient but locking enough of a stake
to not terminate contracts early. The second difference is that the
contract price can only be updated programmatically based on an
oracle price (e.g. WAL/USD), to offer more local-currency stability
to both parties.

Future Improvements. Walrus currently offers a light incentive
to nodes to increase storage capacity or lower prices. Specifically, an
increase in the global shard size would prevent nodes without spare
capacity from growing, giving a larger share of rewards to well-
provisioned nodes; while a decrease in price would push inefficient
nodes out of business, giving a larger share of rewards to efficient
nodes. However,Walrus could offer much stronger incentives to
nodes to expand capacity and drop prices. In particular, Walrus
could explicitly reward nodes that vote for shard sizes that are
larger than the 66.67th percentile submission and subsequently
deliver on their stated preferences. Similarly,Walrus could again
reward nodes that vote for prices lower than the consensus value.
These potential improvements, if incorporated in the future, would
more aggressively keepWalrus at the cutting edge of decentralized
storage provision.

6.4 Token Governance

Governance for Walrus adjusts the parameters in the system, and
operates through the WAL token. Specifically, nodes collectively
determine the level of various penalties, with votes equivalent to
their respective WAL stakes. This allowsWalrus nodes, who often
bear the costs of other nodes’ underperformance, to calibrate the
appropriate financial repercussions.

In contrast, governance for Walrus does not directly adjust the
protocol. Protocol changes are effected by 2𝑓 + 1 storage nodes ac-
cepting them at reconfiguration; and thus they are ratified implicitly
by staked tokens. Changes to the protocol would likely only follow
a robust debate about the security, economic, and business risks of
any change. Many L1s have similar dynamics (e.g. Sui Improvement
Proposals for Sui).

Governance Flow. Token governance within the context of Wal-
rus is similar to the mechanism by which nodes set prices, differing
only on parameter constraints and the method to find consensus.
Specifically, it has the following flow:
(1) Until the staking cutoff point for an epoch (i.e. point 𝑐 in Figure

5), anyWalrus node can issue a proposal for the parameter set
for the subsequent epoch, regarding costs associated for shard
recovery and costs for failing to perform on data challenges.

(2) Once a proposal or set of proposals is live,Walrus nodes can
vote for a single proposal (or for the status quo) in that same

epoch, with their votes equal to their total stake, including
delegated stake.

(3) At the cutoff point 𝑐 , a proposal that earns over 50% of the votes
cast will be implemented for the subsequent epoch, subject to
total voting reaching quorum. If no proposal earns 50% of votes
cast, the status quo earns 50%, or quorum is not reached, no
proposal is implemented and the parameters remain at their
current values.

(4) There are no minimum staking requirements to vote or issue
proposals.

Governance-Determined Parameters. There are four parameters
that the token governance model adjusts through this framework:
(1) The cost associated for shard recovery, for the node sending a

shard. This is a per-shard penalty.
(2) The cost associated for shard recovery, for the node receiving a

shard. This is a per-shard penalty.
(3) The cost associated for a node failing 50% or more of the data

challenges issued. This is a per-shard penalty, and it is multi-
plied by the number of shards held by a node when assessed.

(4) The cost associated for a node failing to issue 50% of more of the
data challenges. This is a per-shard penalty, and it is multiplied
by the number of shards held by a node when assessed.
Any proposal that modifies these parameters must satisfy two

constraints, in addition to trivial constraints like positivity. First, the
shard recovery cost on the sending node must weakly exceed the
shard recovery cost on the receiving node. This ensures the transfer
onus remains on the sending node. Second, the cost associated with
a node failing 50% or more of data challenges must also weakly
exceed the shard recovery cost on the receiving node. This ensures
that receiving nodes are incentivized to report a failed shard transfer
correctly.

6.5 Incentivized Reads

Walrus is designed first and foremost for robust storage of blobs.
To access the data,Walrus encourages storage nodes to provide
free and rapid read access, but there are no strict requirements and
any offering is on a best-effort basis only.

This should work since storage nodes are broadly aligned in
making Walrus a successful system. In addition, we foresee other
providers, such as caches or content distribution networks (CDNs),
offering high-quality read access to data potentially for a fee payed
by the reader or even the writer. But strictly speaking, a rational
storage node might only hold the data but not serve them in the
hopes that other storage nodes will reply (since only 𝑓 + 1 replies
are sufficient). This is a classic public goods problem [36] which
could devolve into no storage nodes replying to the client. The
dynamic will render the system unusable.

There are a few possible solutions to this problem. This paper
briefly outlines three: node service models, on-chain bounties, and
inclusion of light nodes formally inWalrus.

Node Service Models. One solution is to have users strike paid
bilateral contracts with storage nodes to read data. These can take
many forms beyond this simple partnership. For instance, a set of
nodes could offer direct paid endpoints for users to pay for reads
with some service level guarantees. Either readers may pay, or
writers of blobs that want to make them available to all (such as in

13

The MystenLabs Team

the case of publishing a website). Alternatively, those nodes could
strike enterprise-level deals for parties to access data and resell
access onwards. Indeed, this pathway is likely the default way that
caches, publishers, and other content providers built atop Walrus
will interact with the system, handling day-to-day user accesses for
a targeted set of files and turning to Walrus to refresh and update
that set over longer horizons.

While this mechanism does not provide a static incentive for
nodes to return data, it does provide a dynamic one. Nodes who de-
fault on obligations will get bad reputations and will earn fewer fu-
ture business opportunities. We foresee read infrastructures around
serving reads reliably, with very low latency, in a geo-distributed
manner, based on caches and content distribution networks (CDN)
to develop aroundWalrus.

The primary advantage of this mechanism is that it does not
require any change to Walrus itself. The actual mechanism, with-
out further development, may be somewhat complex for end users
(who may not know how to locate their encoded data across shards
nor how to negotiate with nodes directly). But intermediaries can
abstract much of that away. In doing so, they offer rich long-term
business relationships to nodes and so provide stronger incentives
for nodes to honor contracts.

On-Chain Bounties. Another solution is for users to post on-
chain bounties to access data from Walrus when best-effort reads
fail (this can also be done by publishers and caches if they are paid
to provide a certain SLA). Specifically, a user that needs data posts
a bounty, and either allocates the bounty to replying storage nodes
once it receives data or posts a challenge to reclaim the bounty if
it does not receive sufficient data. This incentivizes storage nodes
to reply and earn bounties; and if a user fraudulently attempts to
reclaim the bounty, nodes would overturn the user’s challenge by
posting the data on-chain and thus provide the data to the user.

This solution again requires no change to Walrus itself. These
bounties are intermediated through smart contracts on Sui. The
disadvantages are twofold. First, this is potentially a cumbersome
way of receiving data, particularly if there are frequent disputes on
whether the bounties should be paid. Second, this is complex for end
users, who need to post bounties, allocate credit, post challenges,
and download data post-challenge.

6.6 Decentralized Security Through Light-Node

Sampling

A final way we can address the extreme case that data is unavail-
able in the system is by enabling and incentivizing a second class
of participants, which play the same role as light nodes in Data
Availability systems [1]. These light nodes provide a second, more
decentralized layer of security. Storage nodes would face certain
requirements to interact with these other participants, and could
be slashed for failing to make data available to them.

This is naturally more complex in terms of ensuring security
guarantees are met, but it is more robust. In addition, it offers
a pathway for the community to be involved in the operation of
Walruswithout having to run full storage nodes. Finally, this could
also be combined with the on-chain bounties solution.

Protocol. This is another place were our 2D encoding shines.
Since the size of each symbol is only O(|𝐵 |

𝑛2) light nodes simply

store randomly sampled symbols of files they consider important
and expect bounties to be posted in case of unavailability. They
can also post blames in a rate limited fashion if storage nodes do
not send the symbols requested, similar to how on-chain bounties
work.

The protocol is very simple; from the time the data is written, we
allow light nodes to sample symbols from the storage nodes directly
by performing best-effort reads, or download blobs through caches
and re-encode them. Then, when an on-chain bounty is posted,
the first light node to send a missing symbol to the client with
a signature will be included in a resolution transaction (we can
use the chain if we want fairness otherwise the client can simply
reward itself as a Sybil). The resolution transaction is simply the
addresses of all the light nodes that helped (with the number of
symbols they provided) in order to recover the data. The reward is
then split proportionally between the validators who helped with
the incentivized read and the light nodes. The reward per symbols
should be proportional to the reward per sliver such that the storage
nodes are not incentivized to generate Sybil light nodes to earn
more rewards.

In the future we will design even more efficient protocols based
on off-chain channels to facilitate payments to light nodes that
meaningfully contribute to shard recovery after reconfiguration.

7 Evaluation

We implement a production-ready networked multi-coreWalrus
storage node in Rust. All networking usesHTTPS through axum [35],
it uses fastcrypto [21] for cryptography, rocksdb [28] for storage,
and reed-solomon-simd [24] for erasure coding. We opt to connect
our implementation to Sui [41] as an example of fast blockchain.
We release the codebase as open-source12.

We evaluateWalrus’s performance and scalability on the real,
publicly available, testnet. This is the most realistic evaluation set-
ting, exposing the system to real-world conditions, real users, and
infrastructure outside our control. We observe the Walrus testnet
over a period of 60 days, ending the 22nd of March.

Our evaluation aims at demonstrating the following claims:
(1) C1 (low latency):Walrus achieves low latency, bounded by

network delay.
(2) C2 (throughput): Walrus clients achieve high read and write

throughput.
(3) C3 (scalability): Walrus’s total capacity scales with the num-

ber of storage nodes.

7.1 Experimental Setup

TheWalrus testbed is decentralized, comprising 105 independently
operated storage nodes and 1,000 shards. All reported measure-
ments are based on data voluntarily shared by node operators.

Shards are allocated based on each operator’s stake, reflecting the
mainnet deployment model. Satisfying the 𝑓 + 1 quorum requires
collaboration from at least 19 nodes; the 2𝑓 + 1 quorum requires
38 nodes. No operator controls more than 18 shards. Nodes span
at least 17 countries, including Lithuania, USA, France, Canada,
Netherlands, Thailand, Ireland, Russia, and others. Eleven operators
did not disclose their location. Figure 6 details the shard distribution

12 Link omitted for blind review.

14

Walrus: An Efficient Decentralized Storage Network

eu
-n
or
th

eu
-ea

st

eu
-w
es
t

ca
-ce
nt
ra
l

us
-w
es
t

us
-ea

st

sa
-ea

st

ap
-so
ut
he
as
t

un
kn
ow
n

0

100

200

300

Sh
ar
ds

Figure 6: Geo-distribution of shards.

Het
zn

er

Ch
er

ry
 se

rv
er

s

Le
as

ew
ebOvh

Web
nx

Wor
lds

tre
am

Sk
ys

kip
pe

r

Sy
nli

nq

Int
er

se
rv

er

Unk
no

wn

Te
rra

sw
itc

h b
ar

em
et

al

Reg
.ru

Ato
mic

se
rv

er
s

Te
ra

sw
itc

h

La
tit

ud
e
Aws

Co
loc

at
ion

Alib
ab

a c
lou

d

Dat
a p

ac
ke

t
Gcp

Se
lf-

Hos
te

d

Int
er

se
rv

er.
ne

t
Ve

lia
0

50

100

150

Sh
ar

ds

Figure 7: Distribution of shards by hosting providers.

by region. The “eu-west” region aggregates shards from at least
five countries. Roughly 220 shards are labeled “unknown” due to
missing regional data. Figure 7 shows shard distribution by hosting
providers. “Self-Hosted” nodes run on-premises, while “Unknown”
indicates missing provider information.

Most nodes run Ubuntu (22.04 or 24.04) with at least 16 CPU
cores, 128 GB RAM, and 1 Gbps bandwidth. Hardware varies across
Intel and AMD CPUs and HDD, SSD, and NVMe storage. Node
storage ranges from 15 to 400 TB (median 56.9 TB, P90 69.98 TB).

7.2 System Performance

We evaluate performance from the client’s perspective, deploying
two clients on AWS m5d.8xlarge instances (10 Gbps bandwidth,
32 vCPUs, 128 GB RAM, Ubuntu 22.04). One client runs in US East
(N. Virginia), the other in Canada Central.

Walrus Latency. Figure 8 illustrated the end-to-end latency expe-
rienced by the client. We start measuring before the client encodes
the blob and finish when it observes a proof-of-availability con-
firmation on the blockchain. Each point represents the p50 over 5
minutes of runs; error bars indicate p90.

The graph shows that read latency remains low, even for large
blobs. For small blobs (less than 20 MB), the latency stays below 15
seconds. For large blobs (130 MB), the latency increases to around
30 seconds.

Write latency is consistently higher than read latency. For small
blobs (less than 20 MB), write latency remains relatively flat and
stays under 25 seconds. This overhead is primarily due to the

0 20M 40M 60M 80M 100M 120M 140M
Blob Size (B)

0

25

50

75

100

125

La
te

nc
y

(s
)

read write

Figure 8: Latency for different blob sizes.

Encoding Check Status Get Info Store Publish PoA
0

2

4

6

La
te

nc
y

(s
)

Figure 9: Latency breakdown for small blobs (1KB).

Encoding Check Status Get Info Store Publish PoA
0

25

50

75

100

125

La
te

nc
y

(s
)

Figure 10: Latency breakdown for large blobs (130MB).

blockchain interaction and the need to upload metadata to all stor-
age nodes, rather than the blob size itself. For large blobs (greater
than 40 MB), latency grows linearly with the blob size as network
transfer becomes the dominant cost. Figure 9 and Figure 10 illus-
trate this behavior by breaking down the latency for small blobs
(1 KB) and large blobs (130 MB), respectively. Each write operation
consists of five key steps: encoding (time to erasure-code the blob),
check status (time to check the blob’s current state), get info (time to
fetch blob status and reserve space), store (time to upload slivers to
storage nodes), and publish PoA (time to commit the proof of avail-
ability to the blockchain). For small blobs, the fixed overhead from
metadata handling and blockchain publication dominates, adding
roughly 6 seconds—about 50% of the total write latency. For large
blobs, the storage phase dominates due to network transfer, while
metadata operations and blockchain interaction remain relatively
constant.

These results validate our claimC1:Walrus achieves low latency
and is bounded by network delays.

Single Client Throughput. Figure 11 illustrates the throughput
that can be achieved by a single client in bytes per second. As
expected, read throughput scales linearly with blob size as it is
mostly network interactions. Write throughput plateaus around
18 MB/s because of the need to interact with the blockchain and
the storage nodes multiple times. This does not mean that a user

15

The MystenLabs Team

0 20M 40M 60M 80M 100M 120M 140M
Blob Size (B)

0

20M

40M

60M

Cl
ie

nt
 T

hr
ou

gh
pu

t
(B

/s
)

read write

Figure 11: Single client throughput for different blob sizes.

0 20 40 60 80 100
Storage Nodes

0

1P

2P

3P

4P

5P

St
or

ag
e

Ca
pa

ci
ty

 (
B)

Figure 12: Storage capacity versus committee size.

cannot upload faster, as Sui supports a much higher throughput in
transactions per second, but that a single blob cannot be uploaded
faster. For much larger blobs, a user can deploy multiple clients,
each uploading a chunk of data in parallel, effectively creating a
fan-out pattern.

These results validate C2: Walrus enables clients to read and
write at high throughput.

7.3 Scalability

Over 60 days,Walrus stores a median of 1.18 TB of slivers (P90 1.08
TB) and 221.5 GB of blob metadata (P90 46.34 GB). As described in
Section 7.1, each storage node contributes between 15 and 400 TB
of capacity. Yet, the system as a whole can store over 5 PB—a key
feature of Walrus. Figure 12 illustrates howWalrus’s total storage
capacity scales with the committee size. This result supports our
final claim C5: the system’s capacity grows proportionally with the
number of storage nodes.

8 Related Work

Censorship resistant storage and blob data dissemination motivated
much of the early peer-to-peer movement and the need for decen-
tralization. Within academia Anderson proposed the Eternity ser-
vice [3] in 1996, to ensure documents cannot be suppressed. Within
the commercial and open source communities systems like Nap-
ster [9], Gnutella [33], and Free Haven [15] and early Freenet [11]
used nodes in an unstructured topology to offer storage, routing and
distribution largely of media files. These systems operated on the
basis of centralized or flood fill algorithms for lookup and search;
and full replication of files, often on node used to route responses.
These provide best effort security and poor performance.

Later research, in the early 2000s, proposed structured peer-to-
peer topologies in the form of distributed hash tables (DHT), such
as Chord [38], Pastry [34], Kademlia [26], largely to improve lookup
performance, as well as reduce the replication factor for each file.

DHTs remarkably do not require consensus or full state machine
replication to operate. However, have been shown to be susceptible
to a number of attacks: Sybil attacks [16] were named and identified
within the context of these systems first; and they are hard to defend
against routing attacks [44]. Many attacks affect current systems
that use them [42]. Bittorrent [12] eventually came to dominate the
file dissemination application space, in part due to its simplicity
and built-in incentives. It initially used a full replication strategy
for storage and centralized trackers for node coordination. It later
added decentralized trackers based on Kademlia.

In contrast to these early system Walrus maintains a full and
consistent list of all nodes through using the Sui [8] blockchain, as
well as their latest meta-data. It assumes these are infrastructure
grade nodes and will not suffer great churn, but rather operate to
get incentives and payments, and come in and out of the system
based on a reconfiguration protocol.

In the blockchain era, IPFS [5] provides a decentralized store
for files, and is extensively being used by blockchain systems and
decentralized apps for their storage needs. It provides content ad-
dressable storage for blocks, and uses a distributed hash table (DHT)
to maintain a link between file replicas and nodes that store them.
Publishers of files need to pin files to storage nodes, to ensure files
remain available, usually against some payment. The underlying
storage uses full replication on a few nodes for each file.

Filecoin [30] extends IPFS, using a longest chain blockchain and a
cryptocurrency (FIL) used to incentivize storage nodes to maintain
file replicas. Publishers acquire storage contracts with a few nodes,
and payments are made in the cryptocurrency. Filecoin mitigates
the risk that these nodes delete the replicas by requiring storage
nodes to hold differently encoded copies of the file, and performing
challenges against each other for the encoded files. These copies are
encoded in such a way that it is slow to reproduce them from the
original copy, to avoid relay attacks. As a result, if the user wants to
access the original file, it needs to wait a long time for the decoding
of a copy, unless some storage node has a hot copy. Since, there
is no in-built incentive for storing hot copies, this service usually
costs extra.

Arweave [46] mitigates slow reads through a Proof-of-Access
algorithm that incentives storage nodes to have as many files as
possible locally to maximise rewards. This is implemented in con-
junction with a full replication strategy, and results in replication
levels almost equal to classic state machine replication. Addition-
ally, the system only allows file to be stored ‘for ever’, through a
mechanisms of pre-payment - which lacks the flexibility to control
lifetime and deletion, and is capital inefficient since payment is
upfront.

In contrast to Filecoin and Arweave, Walrus uses erasure coding
to maintain a very low overhead of 4.5x while ensuring data sur-
vives up to 2/3 of any shards being lost, and continues to operate by
allowing writes even if up to 1/3 of shards are unresponsive. Furthe-
more, Walrus does not implement its own separate blockchain to
do node management and provide incentives, but uses Sui instead.

Storj [39] represents another decentralized storage solution that
leverages encoding to achieve a low replication factor. The system
implements a Reed-Solomon based erasure coding scheme with a
29/80 configuration, wherein a file is encoded into 80 parts, with
any 29 sufficient for reconstruction. This approach results in a 2.75𝑥

16

Walrus: An Efficient Decentralized Storage Network

replication factor, offering a substantial reduction in storage costs
compared to prior systems. However, a key limitation of Storj lies
in its inability to efficiently heal lost parts. The system relies on
users to reconstruct the full file and subsequently re-encode it to
facilitate the recovery of lost parts. In contrastWalrus’s use of Red
Stuff incorporates an efficient reconstruction mechanism which
is critical for the efficient healing of the erasure coding scheme,
especially due to churn which is naturally occuring in a permission-
less system. Red Stuff builds on the Twin-code framework [31],
which uses two linear encodings of data to enhance the efficiency
of sliver recovery. However, unlike the Twin-code framework [25],
Red Stuff encodes data across differently sized dimensions and
integrates authenticated data structures, achieving Completeness
(as defined in Section 2) and ensuring Byzantine Fault Tolerance.

Modern blockchains provide some storage, but it is prohibitively
expensive to store larger blobs due to the costs of full replication
across all validators, as well as potentially long retention times to
allow verifiability. Within the Ethereum eco-system specifically, the
current scaling strategy around L2s involves posting blobs of trans-
actions on the main chain, representing bundles of transactions to
be executed, and verified either via zero-knowledge or fraud proofs.
Specialised networks, such as Celestia based on availability sam-
pling [2], have emerged to fulfill this need off the main Ethereum
chain. In Celestia, two dimensional Reed-Solomon codes are used to
encode blobs, and code words distributed to light nodes to support
‘trustless’ availability. However, all blobs are fully replicated across
the validators of the system, for a limited time period of about
month. Walrus instead offers proofs of availability with arbitrarily
long retention periods and a reduced cost of storage per node which
allows the system to scale inpexpensively.

9 Conclusion

We introduce Walrus, a novel approach to decentralized blob stor-
age that leverages fast erasure codes and a modern blockchain
technology. By utilizing the Red Stuff encoding algorithm and the
Sui blockchain,Walrus achieves high resilience and low storage
overhead while ensuring efficient data management and scalabil-
ity. Our system operates in epochs, with all operations sharded
by 𝑏𝑙𝑜𝑏𝑖𝑑 , enabling it to handle large volumes of data effectively.
The innovative two-dimensional BFT encoding protocol of Red
Stuff allows for efficient data recovery, load balancing, and dy-
namic availability of storage nodes, addressing key challenges faced
by existing decentralized storage systems.

Furthermore,Walrus introduces storage proofs that ensure data
availability without relying on network synchrony assumptions,
and its committee reconfiguration protocol guarantees uninter-
rupted data availability during network evolution. By combining
these features, Walrus offers a scalable, and resilient decentral-
ized storage, providing high authenticity, integrity, auditability, and
availability at a reasonable cost. Our contributions include defining
the problem of Asynchronous Complete Data-Sharing, presenting
the Red Stuff protocol, and proposing an asynchronous challenge
protocol for efficient storage proofs, paving the way for future
advancements in decentralized storage technologies.

References

[1] Mustafa Al-Bassam. 2019. Lazyledger: A distributed data availability ledger with
client-side smart contracts. arXiv preprint arXiv:1905.09274 (2019).

[2] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. 2021.
Fraud and data availability proofs: Detecting invalid blocks in light clients. In
Financial Cryptography and Data Security: 25th International Conference, FC

2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II 25. Springer,
279–298.

[3] Ross Anderson. 1996. The Eternity Service. In Proceedings of Pragocrypt ’96.
[4] Pablo Aragón, Andreas Kaltenbrunner, Antonio Calleja-López, Andrés Pereira,

Arnau Monterde, Xabier E Barandiaran, and Vicenç Gómez. 2017. Deliberative
platform design: The case study of the online discussions in Decidim Barcelona.
In Social Informatics: 9th International Conference, SocInfo 2017, Oxford, UK, Sep-

tember 13-15, 2017, Proceedings, Part II 9. Springer, 277–287.
[5] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv

preprint arXiv:1407.3561 (2014).
[6] Nazanin Zahed Benisi, Mehdi Aminian, and Bahman Javadi. 2020. Blockchain-

based decentralized storage networks: A survey. Journal of Network and Computer

Applications 162 (2020), 102656.
[7] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd

Nowacki, Alistair Pott, Shaz Qadeer, Dario Russi Rain, Stephane Sezer, et al.
2019. Move: A language with programmable resources. Libra Assoc (2019), 1.

[8] Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto
Sonnino, et al. 2023. Sui lutris: A blockchain combining broadcast and consensus.
arXiv preprint arXiv:2310.18042 (2023).

[9] Bengt Carlsson and Rune Gustavsson. 2001. The rise and fall of napster-an
evolutionary approach. In International Computer Science Conference on Active

Media Technology. Springer, 347–354.
[10] Dario Catalano and Dario Fiore. 2013. Vector commitments and their applications.

In Public-Key Cryptography–PKC 2013: 16th International Conference on Practice

and Theory in Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013.

Proceedings 16. Springer, 55–72.
[11] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. 2001.

Freenet: A distributed anonymous information storage and retrieval system.
In Designing privacy enhancing technologies: international workshop on design

issues in anonymity and unobservability Berkeley, CA, USA, July 25–26, 2000

Proceedings. Springer, 46–66.
[12] Bram Cohen. 2003. Incentives build robustness in BitTorrent. In Workshop on

Economics of Peer-to-Peer systems, Vol. 6. Berkeley, CA, USA, 68–72.
[13] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2023. Prac-

tical asynchronous high-threshold distributed key generation and distributed
polynomial sampling. In 32nd USENIX Security Symposium (USENIX Security 23).
5359–5376.

[14] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-
Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2518–2534.

[15] Roger Dingledine, Michael J Freedman, and David Molnar. 2001. The free haven
project: Distributed anonymous storage service. In Designing Privacy Enhancing

Technologies: International Workshop on Design Issues in Anonymity and Unob-

servability Berkeley, CA, USA, July 25–26, 2000 Proceedings. Springer, 67–95.
[16] John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer

systems. Springer, 251–260.
[17] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and

Alin Tomescu. 2021. Aggregatable distributed key generation. In Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 147–176.

[18] Martin Kleppmann, Paul Frazee, Jake Gold, Jay Graber, Daniel Holmgren, Devin
Ivy, Jeromy Johnson, Bryan Newbold, and Jaz Volpert. 2024. Bluesky and the
AT protocol: Usable decentralized social media. arXiv preprint arXiv:2402.03239
(2024).

[19] Eleftherios Kokoris Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Svetolik
Jovanovic, Ewa Syta, and Bryan Alexander Ford. 2021. Calypso: Private data
management for decentralized ledgers. Proceedings of the VLDB Endowment 14,
4 (2021), 586–599.

[20] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.
Asynchronous Distributed Key Generation for Computationally-Secure Ran-
domness, Consensus, and Threshold Signatures.. In Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security. 1751–1767.
[21] Mysten Labs. 2025. Fastcrypto. =https://github.com/MystenLabs/fastcrypto.
[22] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible builds: Increasing the

integrity of software supply chains. IEEE Software 39, 2 (2021), 62–70.
[23] Chuanlei Li, Minghui Xu, Jiahao Zhang, Hechuan Guo, and Xiuzhen Cheng. 2024.

SoK: Decentralized Storage Network. Cryptology ePrint Archive (2024).
[24] malair. 2025. Reed-Solomon SIMD. =https://github.com/AndersTrier/reed-

solomon-simd.
[25] Ninoslav Marina, Aneta Velkoska, Natasha Paunkoska, and Ljupcho Baleski.

2015. Security in twin-code framework. In 2015 7th International Congress on

Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).
IEEE, 247–252.

[26] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In International workshop on peer-to-peer

17

=
=

The MystenLabs Team

systems. Springer, 53–65.
[27] Ralph C Merkle. 1987. A digital signature based on a conventional encryption

function. In Conference on the theory and application of cryptographic techniques.
Springer, 369–378.

[28] Metar. 2025. Rocksdb. =https://rocksdb.org.
[29] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. {CHAINIAC}:
Proactive {Software-Update} transparency via collectively signed skipchains
and verified builds. In 26th USENIX Security Symposium (USENIX Security 17).
1271–1287.

[30] Yiannis Psaras and David Dias. 2020. The interplanetary file system and the
filecoin network. In 2020 50th Annual IEEE-IFIP International Conference on De-

pendable Systems and Networks-Supplemental Volume (DSN-S). IEEE, 80–80.
[31] KV Rashmi, Nihar B Shah, and P Vijay Kumar. 2011. Enabling node repair in

any erasure code for distributed storage. In 2011 IEEE international symposium

on information theory proceedings. IEEE, 1235–1239.
[32] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[33] Matei Ripeanu. 2001. Peer-to-peer architecture case study: Gnutella network. In
Proceedings first international conference on peer-to-peer computing. IEEE, 99–100.

[34] Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware 2001:

IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,

Germany, November 12–16, 2001 Proceedings 2. Springer, 329–350.
[35] The Tokio rs team. 2025. Axum. =https://github.com/tokio-rs/axum.
[36] Paul A. Samuelson. 1954. The Pure Theory of Public Expenditure. The Review of

Economics and Statistics 36, 4 (1954), 387–389. http://www.jstor.org/stable/19258
95

[37] Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),
299–319.

[38] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. 2003. Chord: a scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM Transactions on

networking 11, 1 (2003), 17–32.
[39] I Storj Labs. 2018. Storj: A decentralized cloud storage network framework.
[40] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. 2017. Scalable bias-
resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy

(SP). Ieee, 444–460.
[41] The Sui team. 2025. Build Beyond. =https://sui.io.
[42] Juan Pablo Timpanaro, Thibault Cholez, Isabelle Chrisment, and Olivier Festor.

2011. Bittorrent’s mainline dht security assessment. In 2011 4th IFIP International

Conference on New Technologies, Mobility and Security. IEEE, 1–5.
[43] David Vorick and Luke Champine. 2014. Sia: Simple decentralized storage.

Retrieved May 8 (2014), 2018.
[44] Dan S Wallach. 2002. A survey of peer-to-peer security issues. In International

symposium on software security. Springer, 42–57.
[45] Karl Werder, Balasubramaniam Ramesh, and Rongen Zhang. 2022. Establishing

data provenance for responsible artificial intelligence systems. ACM Transactions

on Management Information Systems (TMIS) 13, 2 (2022), 1–23.
[46] SamWilliams, Viktor Diordiiev, Lev Berman, and Ivan Uemlianin. 2019. Arweave:

A protocol for economically sustainable information permanence. Arweave Yellow
Paper (2019).

[47] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. 2014.
Heading Off Correlated Failures through {Independence-as-a-Service}. In 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
317–334.

A Detailed Algorithms

This section supplements Section 4 by providing detailed algo-
rithms for clients (Algorithm 1) and storage nodes operations (Al-
gorithm 3).

In additional to the helper functions specified in Algorithm 2,
these algorithms also leverages the following (intuitive) functions:
ByteSize(𝐵) to compute the size of a blob𝐵 in bytes;MerkleTree(𝑣)
to compute a merkle tree over a vector input 𝑣 ;Hash(·) to compute
a cryptographic hash;ErasureEncode(𝐵),ErasureReconstruct(·),
and ErasureDecode(·), to respective erasure encode a blob 𝐵, re-
construct a blocb from enough erasure coded parts, and erasure
decode a blob as described in Section 3.3; HandledShards(𝑛) to

𝐸 (𝑖, 𝑗) Symbol at position (𝑖, 𝑗) of an encoded blob
𝑆𝑝 The set of primary slivers
𝑆𝑠 The set of secondary slivers

𝑆 (𝑝,𝑛) The primary sliver held by storage node 𝑛
𝑆 (𝑠,𝑛) The secondary sliver held by storage node 𝑛

{𝑆 (𝑝,∗) }𝑓 +1 Any set of 𝑓 + 1 primary slivers
𝑀𝑝 Metadata associated with the primary slivers
𝑀𝑠 Metadata associated with the secondary slivers
𝐷𝑛 The set of shards handled by node 𝑛

Table 2: Main notations

get the shards handled by a node 𝑛; and SplitIntoMatrix(·) to
reshape a matrix into the specified size.

Furthermore, the client and storage nodes use the following func-
tions to interact with the blockchain: ReserveBlob(·) to reserve
a blob id on the blockchain; StoreCertificate(·) to store a proof
of storage on the blockchain; IsRegistered(𝑖𝑑) to check if a blob
id 𝑖𝑑 is registered on the blockchain; and ReadCertificate(𝑖𝑑) to
read a proof of storage of blob id 𝑖𝑑 from the blockchain.

Table 2 summarizes the main notations used in the algorithms.
Subscripts of matrices and vectors denote access to a specific index.

Algorithm 1 Walrus client operations
1: nodes ⊲ the committee of storage nodes
2: shards ⊲ see Section 4

// Store a blob on the network
3: procedure StoreBlob(𝐵, 𝑒𝑥𝑝𝑖𝑟𝑦)
4: // Step 1: Pay and register the blob id on the blockchain
5: (𝑆𝑝 , 𝑆𝑠) ← EncodeBlob(𝐵)
6: 𝑀 ← MakeMetadata(𝑆𝑝 , 𝑆𝑠)
7: 𝑖𝑑 ← MakeBlobId(𝑀)
8: 𝑠𝑖𝑧𝑒 ← ByteSize(𝐵) ⊲ size in bytes
9: ReserveBlob(𝑖𝑑, 𝑠𝑖𝑧𝑒, 𝑒𝑥𝑝𝑖𝑟𝑦) ⊲ on blockchain
10:
11: // Step 2: Send the encoded slivers to the storage nodes
12: 𝑅 ← { } ⊲ storage requests to send to nodes
13: for 𝑛 ∈ nodes do
14: 𝐷𝑛 ← HandledShards(𝑛) ⊲ shards handed by node 𝑛
15: 𝑆 (𝑝,𝑛) ← [𝑆𝑝

𝑖
: 𝑖 ∈ 𝐷𝑛]

16: 𝑆 (𝑠,𝑛) ← [𝑆𝑠
𝑖
: 𝑖 ∈ 𝐷𝑛]

17: StoreRqst← (𝑖𝑑,𝑀, 𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛))
18: 𝑅 ← 𝑅 ∪ { (𝑛, StoreRqst) }
19: await2𝑓 +1 : {𝑐 ← Send(𝑛, 𝑟) : (𝑛, 𝑟) ∈ 𝑅} ⊲ wait for 2𝑓 + 1 confirmations
20:
21: // Step 3: Record the proof of storage on the blockchain
22: StoreCertificate({𝑐 }, 𝑖𝑑) ⊲ on blockchain

// Read metadata from the network
23: procedure RetrieveMetadata(𝑖𝑑)
24: MetadataRqst← (𝑖𝑑)
25: 𝐷 ←$ {0, shards}𝑛 ⊲ request all shards
26: 𝑁 ← {𝑛 ∈ nodes s.t. ∃𝑠 ∈ 𝐷 ∩ HandledShards(𝑛) }
27: await2𝑓 +1 : {𝑀 ← Send(𝑛,MetadataRqst) : 𝑛 ∈ 𝑁 } ⊲ wait for 2𝑓 + 1 responses
28: if ∃𝑀 ∈ {𝑀 } s.t.MakeBlobId(𝑀) = 𝑖𝑑 then return𝑀

29: return ⊥

// Read a blob from the network
30: procedure ReadBlob(𝑖𝑑)
31: 𝑀 ← RetrieveMetadata(𝑖𝑑)
32: SliversRqst← (𝑖𝑑)
33: await2𝑓 +1 : {𝑆𝑠,𝑛) ← Send(𝑛, SliversRqsts) s.t. 𝑛 ∈ nodes :

VerifySliver(𝑆 (𝑠,𝑛) , 𝑀) }
34: 𝐵 ← DecodeBlob({𝑆 (𝑠,∗) }2𝑓 +1, 𝑀)
35: return 𝐵

18

=
=
http://www.jstor.org/stable/1925895
http://www.jstor.org/stable/1925895
=

Walrus: An Efficient Decentralized Storage Network

Algorithm 2 Helper functions
1: nodes ⊲ the committee of storage nodes
2: shards ⊲ see Section 4

3: procedure EncodeBlob(𝐵)
4: 𝐸 ← ErasureEncode(𝐵) ⊲ expand size: [(𝑓 + 1) × (2𝑓 + 1)] → [shards × shards]
5: 𝑆𝑝 ← [𝐸 (𝑖,∗) : 𝑖 ∈ [0, shards]] ⊲ encoded primary slivers: [shards × 1]
6: 𝑆𝑠 ← [𝐸 (∗,𝑖) : 𝑖 ∈ [0, shards]]⊤ ⊲ encoded secondary slivers: [1 × shards]
7: return (𝑆𝑝 , 𝑆𝑠)

8: procedure MakeMetadata(𝑆𝑝 , 𝑆𝑠)
9: 𝑀𝑝 ← [Hash(𝑠) : 𝑠 ∈ 𝑆𝑝] ⊲ length: 2𝑓 + 1
10: 𝑀𝑠 ← [Hash(𝑠) : 𝑠 ∈ 𝑆𝑠] ⊲ length: 𝑓 + 1
11: 𝑀 ← (𝑀𝑝 , 𝑀𝑠)
12: return𝑀

13: procedure MakeBlobId(𝑀)
14: (𝑀𝑝 , 𝑀𝑠) ← 𝑀

15: 𝑖𝑑 ← (MerkleTree(𝑀𝑝),MerkleTree(𝑀𝑠))
16: return 𝑖𝑑

17: procedure VerifySliver(𝑆 (∗,𝑛) , 𝑀)
18: (𝑀𝑝 , 𝑀𝑠) ← 𝑀

19: return (Hash(𝑠) = 𝑀
𝑝
𝑛 : ∀𝑠 ∈ 𝑆 (𝑝,𝑛)) ∨ (Hash(𝑠) = 𝑀𝑠

𝑛 : ∀𝑠 ∈ 𝑆 (𝑠,𝑛))

20: procedure DecodeBlob({𝑆 (𝑝,∗) }𝑓 +1, 𝑀)

21: 𝑆𝑝 ← ErasureReconstruct({𝑆 (𝑝,∗) }𝑓 +1) ⊲ reconstruct encoded slivers
22: 𝐸 ← SplitIntoMatrix(𝑆𝑝) ⊲ size: shard × shard

23: 𝑆𝑠 ← [𝐸 (∗,𝑖) : 𝑖 ∈ [0, shards]]⊤
24: 𝑀 ′ ← MakeMetadata(𝑆𝑝 , 𝑆𝑠)
25: if 𝑀 ≠ 𝑀 ′ then return ⊥ ⊲ verify encoding correctness, see Section 4.2
26: 𝐵 ← ErasureDecode(𝐸) ⊲ matrix: (𝑓 + 1) × (2𝑓 + 1)
27: return 𝐵

Algorithm 3 Walrus store operations
1: n ⊲ the identifier of the storage node
2: nodes ⊲ the committee of storage nodes
3: shards ⊲ see Section 4
4: db𝑚 ⊲ perists the metadata
5: db𝑏 ⊲ perists the slivers

// Store slivers
6: procedure StoreSlivers(StoreRqst)
7: (𝑖𝑑,𝑀, 𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛)) ← StoreRqst

8:
9: // Check 1: Ensure the node is responsible for the shards
10: 𝐷𝑛 ← HandledShards(n)
11: if ∃𝑠𝑖 ∈ 𝑆𝑝 ∪ 𝑆𝑠 s.t. 𝑖 ∉ 𝐷𝑛

then return ⊥
12:
13: // Check 2: Verify the blob id is registered on chain
14: if ¬IsRegistered(𝑖𝑑) then return ⊥

⊲ read blockchain
15:
16: // Check 3: Verify the metadata is correctly formed
17: if ¬VerifySliver(𝑆 (𝑝,𝑛) , 𝑀) then return ⊥
18: if ¬VerifySliver(𝑆 (𝑠,𝑛) , 𝑀) then return ⊥
19: 𝑖𝑑′ ← MakeBlobId(𝑀)
20: if 𝑖𝑑 ≠ 𝑖𝑑′ then return ⊥
21:
22: db𝑚 [𝑖𝑑] ← 𝑀 ⊲ persist the metadata
23: db𝑏 [𝑖𝑑] ← (𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛)) ⊲ persist the slivers
24: Send(𝑎𝑐𝑘) ⊲ reply with an acknowledgment

// Server metadata
25: procedure ServeMetadata(MetadataRqst)
26: 𝑖𝑑 ← MetadataRqst

27: return db𝑚 [𝑖𝑑] ⊲ return the metadata or ⊥ if not found
28: Reply(𝑎𝑐𝑘)

// Server slivers
29: procedure ServeSlivers(SliversRqst)
30: 𝑖𝑑 ← SliversRqst

31: if ¬ReadCertificate(𝑖𝑑) then return ⊥ ⊲ proof of storage on the blockchain
32: (𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛)) ← db𝑏 [𝑖𝑑] ⊲ return the slivers or ⊥ if not found
33: Reply(𝑆 (𝑠,𝑛))

// Recover slivers
34: procedure RecoverSlivers(𝑖𝑑)
35: 𝑐 ← Client(nodes, shards) ⊲ build a Walrus client (Algorithm 1)
36: 𝐵 ← 𝑐.ReadBlob(𝑖𝑑)
37: 𝐷n ← HandledShards(n) ⊲ shards handed by node 𝑛
38: 𝑆 (𝑝,n) ← [𝑆𝑝

𝑖
: 𝑖 ∈ 𝐷n]

39: 𝑆 (𝑠,n) ← [𝑆𝑠
𝑖
: 𝑖 ∈ 𝐷n]

40: db𝑚 [𝑖𝑑] ← 𝑀 ⊲ persist the metadata
41: db𝑏 [𝑖𝑑] ← (𝑆 (𝑝,n) , 𝑆 (𝑠,n)) ⊲ persist the slivers

19

	Abstract
	1 Introduction
	2 Models and Definitions
	3 Asynchronous Complete Data Storage (ACDS)
	3.1 Problem Statement
	3.2 Strawman Design
	3.3 Final design: Red Stuff

	4 The Walrus Decentralized Secure Blob Store
	4.1 Writing a Blob
	4.2 Reading a Blob
	4.3 Recovery of Slivers
	4.4 Handling Inconsistent Encoding from Malicious Writers
	4.5 Committee Reconfiguration
	4.6 Storage Challenges

	5 Red Stuff and Walrus Proofs
	5.1 Write Completeness
	5.2 Read Consistency
	5.3 Validity
	5.4 Asychronous Challenges

	6 Economics and Incentives
	6.1 Staking
	6.2 Shard Migration
	6.3 Payments for Storage and Writes
	6.4 Token Governance
	6.5 Incentivized Reads
	6.6 Decentralized Security Through Light-Node Sampling

	7 Evaluation
	7.1 Experimental Setup
	7.2 System Performance
	7.3 Scalability

	8 Related Work
	9 Conclusion
	References
	A Detailed Algorithms

