sui_storage/
mutex_table.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

use std::collections::hash_map::{DefaultHasher, RandomState};
use std::collections::HashMap;
use std::error::Error;
use std::fmt;
use std::hash::{BuildHasher, Hash, Hasher};
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::Arc;
use std::time::Duration;

use parking_lot::{ArcMutexGuard, ArcRwLockReadGuard, ArcRwLockWriteGuard, Mutex, RwLock};
use tokio::task::JoinHandle;
use tokio::time::Instant;
use tracing::info;

use mysten_metrics::spawn_monitored_task;

type OwnedMutexGuard<T> = ArcMutexGuard<parking_lot::RawMutex, T>;
type OwnedRwLockReadGuard<T> = ArcRwLockReadGuard<parking_lot::RawRwLock, T>;
type OwnedRwLockWriteGuard<T> = ArcRwLockWriteGuard<parking_lot::RawRwLock, T>;

pub trait Lock: Send + Sync + Default {
    type Guard;
    type ReadGuard;
    fn lock_owned(self: Arc<Self>) -> Self::Guard;
    fn try_lock_owned(self: Arc<Self>) -> Option<Self::Guard>;
    fn read_lock_owned(self: Arc<Self>) -> Self::ReadGuard;
}

impl Lock for Mutex<()> {
    type Guard = OwnedMutexGuard<()>;
    type ReadGuard = Self::Guard;

    fn lock_owned(self: Arc<Self>) -> Self::Guard {
        self.lock_arc()
    }

    fn try_lock_owned(self: Arc<Self>) -> Option<Self::Guard> {
        self.try_lock_arc()
    }

    fn read_lock_owned(self: Arc<Self>) -> Self::ReadGuard {
        self.lock_arc()
    }
}

impl Lock for RwLock<()> {
    type Guard = OwnedRwLockWriteGuard<()>;
    type ReadGuard = OwnedRwLockReadGuard<()>;

    fn lock_owned(self: Arc<Self>) -> Self::Guard {
        self.write_arc()
    }

    fn try_lock_owned(self: Arc<Self>) -> Option<Self::Guard> {
        self.try_write_arc()
    }

    fn read_lock_owned(self: Arc<Self>) -> Self::ReadGuard {
        self.read_arc()
    }
}

type InnerLockTable<K, L> = HashMap<K, Arc<L>>;
// MutexTable supports mutual exclusion on keys such as TransactionDigest or ObjectDigest
pub struct LockTable<K: Hash, L: Lock> {
    random_state: RandomState,
    lock_table: Arc<Vec<RwLock<InnerLockTable<K, L>>>>,
    _k: std::marker::PhantomData<K>,
    _cleaner: JoinHandle<()>,
    stop: Arc<AtomicBool>,
    size: Arc<AtomicUsize>,
}

pub type MutexTable<K> = LockTable<K, Mutex<()>>;
pub type RwLockTable<K> = LockTable<K, RwLock<()>>;

#[derive(Debug)]
pub enum TryAcquireLockError {
    LockTableLocked,
    LockEntryLocked,
}

impl fmt::Display for TryAcquireLockError {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "operation would block")
    }
}

impl Error for TryAcquireLockError {}
pub type MutexGuard = OwnedMutexGuard<()>;
pub type RwLockGuard = OwnedRwLockReadGuard<()>;

impl<K: Hash + Eq + Send + Sync + 'static, L: Lock + 'static> LockTable<K, L> {
    pub fn new_with_cleanup(
        num_shards: usize,
        cleanup_period: Duration,
        cleanup_initial_delay: Duration,
        cleanup_entries_threshold: usize,
    ) -> Self {
        let num_shards = if cfg!(msim) { 4 } else { num_shards };

        let lock_table: Arc<Vec<RwLock<InnerLockTable<K, L>>>> = Arc::new(
            (0..num_shards)
                .map(|_| RwLock::new(HashMap::new()))
                .collect(),
        );
        let cloned = lock_table.clone();
        let stop = Arc::new(AtomicBool::new(false));
        let stop_cloned = stop.clone();
        let size: Arc<AtomicUsize> = Arc::new(AtomicUsize::new(0));
        let size_cloned = size.clone();
        Self {
            random_state: RandomState::new(),
            lock_table,
            _k: std::marker::PhantomData {},
            _cleaner: spawn_monitored_task!(async move {
                tokio::time::sleep(cleanup_initial_delay).await;
                let mut previous_cleanup_instant = Instant::now();
                while !stop_cloned.load(Ordering::SeqCst) {
                    if size_cloned.load(Ordering::SeqCst) >= cleanup_entries_threshold
                        || previous_cleanup_instant.elapsed() >= cleanup_period
                    {
                        let num_removed = Self::cleanup(cloned.clone());
                        size_cloned.fetch_sub(num_removed, Ordering::SeqCst);
                        previous_cleanup_instant = Instant::now();
                    }
                    tokio::time::sleep(Duration::from_secs(1)).await;
                }
                info!("Stopping mutex table cleanup!");
            }),
            stop,
            size,
        }
    }

    pub fn new(num_shards: usize) -> Self {
        Self::new_with_cleanup(
            num_shards,
            Duration::from_secs(10),
            Duration::from_secs(10),
            10_000,
        )
    }

    pub fn size(&self) -> usize {
        self.size.load(Ordering::SeqCst)
    }

    pub fn cleanup(lock_table: Arc<Vec<RwLock<InnerLockTable<K, L>>>>) -> usize {
        let mut num_removed: usize = 0;
        for shard in lock_table.iter() {
            let map = shard.try_write();
            if map.is_none() {
                continue;
            }
            map.unwrap().retain(|_k, v| {
                // MutexMap::(try_|)acquire_locks will lock the map and call Arc::clone on the entry
                // This check ensures that we only drop entry from the map if this is the only mutex copy
                // This check is also likely sufficient e.g. you don't even need try_lock below, but keeping it just in case
                if Arc::strong_count(v) == 1 {
                    num_removed += 1;
                    false
                } else {
                    true
                }
            });
        }
        num_removed
    }

    fn get_lock_idx(&self, key: &K) -> usize {
        let mut hasher = if !cfg!(test) {
            self.random_state.build_hasher()
        } else {
            // be deterministic for tests
            DefaultHasher::new()
        };

        key.hash(&mut hasher);
        // unwrap ok - converting u64 -> usize
        let hash: usize = hasher.finish().try_into().unwrap();
        hash % self.lock_table.len()
    }

    pub fn acquire_locks<I>(&self, object_iter: I) -> Vec<L::Guard>
    where
        I: Iterator<Item = K>,
        K: Ord,
    {
        let mut objects: Vec<K> = object_iter.into_iter().collect();
        objects.sort_unstable();
        objects.dedup();

        let mut guards = Vec::with_capacity(objects.len());
        for object in objects.into_iter() {
            guards.push(self.acquire_lock(object));
        }
        guards
    }

    pub fn acquire_read_locks(&self, mut objects: Vec<K>) -> Vec<L::ReadGuard>
    where
        K: Ord,
    {
        objects.sort_unstable();
        objects.dedup();
        let mut guards = Vec::with_capacity(objects.len());
        for object in objects.into_iter() {
            guards.push(self.get_lock(object).read_lock_owned());
        }
        guards
    }

    pub fn get_lock(&self, k: K) -> Arc<L> {
        let lock_idx = self.get_lock_idx(&k);
        let element = {
            let map = self.lock_table[lock_idx].read();
            map.get(&k).cloned()
        };
        if let Some(element) = element {
            element
        } else {
            // element doesn't exist
            let element = {
                let mut map = self.lock_table[lock_idx].write();
                map.entry(k)
                    .or_insert_with(|| {
                        self.size.fetch_add(1, Ordering::SeqCst);
                        Arc::new(L::default())
                    })
                    .clone()
            };
            element
        }
    }

    pub fn acquire_lock(&self, k: K) -> L::Guard {
        self.get_lock(k).lock_owned()
    }

    pub fn try_acquire_lock(&self, k: K) -> Result<L::Guard, TryAcquireLockError> {
        let lock_idx = self.get_lock_idx(&k);
        let element = {
            let map = self.lock_table[lock_idx]
                .try_read()
                .ok_or(TryAcquireLockError::LockTableLocked)?;
            map.get(&k).cloned()
        };
        if let Some(element) = element {
            let lock = element.try_lock_owned();
            lock.ok_or(TryAcquireLockError::LockEntryLocked)
        } else {
            // element doesn't exist
            let element = {
                let mut map = self.lock_table[lock_idx]
                    .try_write()
                    .ok_or(TryAcquireLockError::LockTableLocked)?;
                map.entry(k)
                    .or_insert_with(|| {
                        self.size.fetch_add(1, Ordering::SeqCst);
                        Arc::new(L::default())
                    })
                    .clone()
            };
            let lock = element.try_lock_owned();
            lock.ok_or(TryAcquireLockError::LockEntryLocked)
        }
    }
}

impl<K: Hash, L: Lock> Drop for LockTable<K, L> {
    fn drop(&mut self) {
        self.stop.store(true, Ordering::SeqCst);
    }
}

#[tokio::test]
// Tests that mutex table provides parallelism on the individual mutex level,
// e.g. that locks for different entries do not block entire bucket if it needs to wait on individual lock
async fn test_mutex_table_concurrent_in_same_bucket() {
    use tokio::time::{sleep, timeout};
    let mutex_table = Arc::new(MutexTable::<String>::new(1));
    let john = mutex_table.try_acquire_lock("john".to_string());
    let _ = john.unwrap();
    {
        let mutex_table = mutex_table.clone();
        std::thread::spawn(move || {
            let _ = mutex_table.acquire_lock("john".to_string());
        });
    }
    sleep(Duration::from_millis(50)).await;
    let jane = mutex_table.try_acquire_lock("jane".to_string());
    let _ = jane.unwrap();

    let mutex_table = Arc::new(MutexTable::<String>::new(1));
    let _john = mutex_table.acquire_lock("john".to_string());
    {
        let mutex_table = mutex_table.clone();
        std::thread::spawn(move || {
            let _ = mutex_table.acquire_lock("john".to_string());
        });
    }
    sleep(Duration::from_millis(50)).await;
    let jane = timeout(
        Duration::from_secs(1),
        tokio::task::spawn_blocking(move || {
            let _ = mutex_table.acquire_lock("jane".to_string());
        }),
    )
    .await;
    let _ = jane.unwrap();
}

#[tokio::test]
async fn test_mutex_table() {
    // Disable bg cleanup with Duration.MAX for initial delay
    let mutex_table =
        MutexTable::<String>::new_with_cleanup(1, Duration::from_secs(10), Duration::MAX, 1000);
    let john1 = mutex_table.try_acquire_lock("john".to_string());
    assert!(john1.is_ok());
    let john2 = mutex_table.try_acquire_lock("john".to_string());
    assert!(john2.is_err());
    drop(john1);
    let john2 = mutex_table.try_acquire_lock("john".to_string());
    assert!(john2.is_ok());
    let jane = mutex_table.try_acquire_lock("jane".to_string());
    assert!(jane.is_ok());
    MutexTable::cleanup(mutex_table.lock_table.clone());
    let map = mutex_table.lock_table.first().as_ref().unwrap().try_read();
    assert!(map.is_some());
    assert_eq!(map.unwrap().len(), 2);
    drop(john2);
    MutexTable::cleanup(mutex_table.lock_table.clone());
    let map = mutex_table.lock_table.first().as_ref().unwrap().try_read();
    assert!(map.is_some());
    assert_eq!(map.unwrap().len(), 1);
    drop(jane);
    MutexTable::cleanup(mutex_table.lock_table.clone());
    let map = mutex_table.lock_table.first().as_ref().unwrap().try_read();
    assert!(map.is_some());
    assert!(map.unwrap().is_empty());
}

#[tokio::test]
async fn test_acquire_locks() {
    let mutex_table =
        RwLockTable::<String>::new_with_cleanup(1, Duration::from_secs(10), Duration::MAX, 1000);
    let object_1 = "object 1".to_string();
    let object_2 = "object 2".to_string();
    let object_3 = "object 3".to_string();

    // ensure even with duplicate objects we succeed acquiring their locks
    let objects = vec![
        object_1.clone(),
        object_2.clone(),
        object_2,
        object_1.clone(),
        object_3,
        object_1,
    ];

    let locks = mutex_table.acquire_locks(objects.clone().into_iter());
    assert_eq!(locks.len(), 3);

    for object in objects.clone() {
        assert!(mutex_table.try_acquire_lock(object).is_err());
    }

    drop(locks);
    let locks = mutex_table.acquire_locks(objects.into_iter());
    assert_eq!(locks.len(), 3);
}

#[tokio::test]
async fn test_read_locks() {
    let mutex_table =
        RwLockTable::<String>::new_with_cleanup(1, Duration::from_secs(10), Duration::MAX, 1000);
    let lock = "lock".to_string();
    let locks1 = mutex_table.acquire_read_locks(vec![lock.clone()]);
    assert!(mutex_table.try_acquire_lock(lock.clone()).is_err());
    let locks2 = mutex_table.acquire_read_locks(vec![lock.clone()]);
    drop(locks1);
    drop(locks2);
    assert!(mutex_table.try_acquire_lock(lock.clone()).is_ok());
}

#[tokio::test(flavor = "current_thread", start_paused = true)]
async fn test_mutex_table_bg_cleanup() {
    let mutex_table = MutexTable::<String>::new_with_cleanup(
        1,
        Duration::from_secs(5),
        Duration::from_secs(1),
        1000,
    );
    let lock1 = mutex_table.try_acquire_lock("lock1".to_string());
    let lock2 = mutex_table.try_acquire_lock("lock2".to_string());
    let lock3 = mutex_table.try_acquire_lock("lock3".to_string());
    let lock4 = mutex_table.try_acquire_lock("lock4".to_string());
    let lock5 = mutex_table.try_acquire_lock("lock5".to_string());
    assert!(lock1.is_ok());
    assert!(lock2.is_ok());
    assert!(lock3.is_ok());
    assert!(lock4.is_ok());
    assert!(lock5.is_ok());
    // Trigger cleanup
    MutexTable::cleanup(mutex_table.lock_table.clone());
    // Try acquiring locks again, these should still fail because locks have not been released
    let lock11 = mutex_table.try_acquire_lock("lock1".to_string());
    let lock22 = mutex_table.try_acquire_lock("lock2".to_string());
    let lock33 = mutex_table.try_acquire_lock("lock3".to_string());
    let lock44 = mutex_table.try_acquire_lock("lock4".to_string());
    let lock55 = mutex_table.try_acquire_lock("lock5".to_string());
    assert!(lock11.is_err());
    assert!(lock22.is_err());
    assert!(lock33.is_err());
    assert!(lock44.is_err());
    assert!(lock55.is_err());
    // drop all locks
    drop(lock1);
    drop(lock2);
    drop(lock3);
    drop(lock4);
    drop(lock5);
    // Wait for bg cleanup to be triggered
    tokio::time::sleep(Duration::from_secs(10)).await;
    for entry in mutex_table.lock_table.iter() {
        let locked = entry.read();
        assert!(locked.is_empty());
    }
}

#[tokio::test(flavor = "current_thread", start_paused = true)]
async fn test_mutex_table_bg_cleanup_with_size_threshold() {
    // set up the table to never trigger cleanup because of time period but only size threshold
    let mutex_table =
        MutexTable::<String>::new_with_cleanup(1, Duration::MAX, Duration::from_secs(1), 5);
    let lock1 = mutex_table.try_acquire_lock("lock1".to_string());
    let lock2 = mutex_table.try_acquire_lock("lock2".to_string());
    let lock3 = mutex_table.try_acquire_lock("lock3".to_string());
    let lock4 = mutex_table.try_acquire_lock("lock4".to_string());
    let lock5 = mutex_table.try_acquire_lock("lock5".to_string());
    assert!(lock1.is_ok());
    assert!(lock2.is_ok());
    assert!(lock3.is_ok());
    assert!(lock4.is_ok());
    assert!(lock5.is_ok());
    // Trigger cleanup
    MutexTable::cleanup(mutex_table.lock_table.clone());
    // Try acquiring locks again, these should still fail because locks have not been released
    let lock11 = mutex_table.try_acquire_lock("lock1".to_string());
    let lock22 = mutex_table.try_acquire_lock("lock2".to_string());
    let lock33 = mutex_table.try_acquire_lock("lock3".to_string());
    let lock44 = mutex_table.try_acquire_lock("lock4".to_string());
    let lock55 = mutex_table.try_acquire_lock("lock5".to_string());
    assert!(lock11.is_err());
    assert!(lock22.is_err());
    assert!(lock33.is_err());
    assert!(lock44.is_err());
    assert!(lock55.is_err());
    assert_eq!(mutex_table.size(), 5);
    // drop all locks
    drop(lock1);
    drop(lock2);
    drop(lock3);
    drop(lock4);
    drop(lock5);
    tokio::task::yield_now().await;
    // Wait for bg cleanup to be triggered because of size threshold
    tokio::time::advance(Duration::from_secs(5)).await;
    tokio::task::yield_now().await;
    assert_eq!(mutex_table.size(), 0);
    for entry in mutex_table.lock_table.iter() {
        let locked = entry.read();
        assert!(locked.is_empty());
    }
}