sui_sql_macro/
parser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

use std::borrow::Cow;

use crate::lexer::{Lexeme, Token};

/// Recursive descent parser for format strings. This struct is intended to be lightweight to
/// support efficient backtracking. Backtracking is implemented by operating on a copy of the
/// parser's state, and only updating the original when the copy has reached a known good position.
#[derive(Copy, Clone)]
pub(crate) struct Parser<'l, 's> {
    lexemes: &'l [Lexeme<'s>],
}

/// Structured representation of a format string, starting with a text prefix (the head), followed
/// by interleaved binders followed by text suffixes (the tail).
#[derive(Debug, PartialEq, Eq)]
pub(crate) struct Format<'s> {
    pub head: Cow<'s, str>,
    pub tail: Vec<(syn::Type, Cow<'s, str>)>,
}

#[derive(thiserror::Error, Debug)]
pub(crate) enum Error {
    #[error("Unexpected {actual} at offset {offset}, expected {expect}")]
    Unexpected {
        offset: usize,
        actual: Token,
        expect: Token,
    },

    #[error("Unexpected end of format string, expected: {expect:?}")]
    UnexpectedEos { expect: Token },

    #[error("Error parsing type for binder at offset {offset}: {source}")]
    TypeParse { offset: usize, source: syn::Error },
}

/// Recursive descent parser recognizing the following grammar:
///
///   format        ::= text? (bind text?)*
///   text          ::= part +
///   part          ::= lcurly_escape | rcurly_escape | TEXT
///   bind          ::= '{' TEXT '}'
///   lcurly_escape ::= '{' '{'
///   rcurly_escape ::= '}' '}'
///
/// The parser reads tokens from the front, consuming them when it is able to successfully parse a
/// non-terminal. When parsing fails, the parser may be left in an indeterminate state.
/// Backtracking requires explicitly copying the parser state.
impl<'l, 's> Parser<'l, 's> {
    /// Constructs a new parser instance that will consume the given `lexemes`.
    pub(crate) fn new(lexemes: &'l [Lexeme<'s>]) -> Self {
        Self { lexemes }
    }

    /// Entrypoint to the parser. Consumes the entire remaining output (and therefore also the
    /// parser).
    pub(crate) fn format(mut self) -> Result<Format<'s>, Error> {
        let head = self.text_opt();

        let mut tail = vec![];
        while let Some(bind) = self.bind()? {
            let suffix = self.text_opt();
            tail.push((bind, suffix));
        }

        Ok(Format { head, tail })
    }

    /// Parse a strand of text. The parser is left in its initial state and an empty string is
    /// returned if there was no text to parse.
    fn text_opt(&mut self) -> Cow<'s, str> {
        let mut copy = *self;
        copy.text().map_or(Cow::Borrowed(""), |t| {
            *self = copy;
            t
        })
    }

    /// Parse a strand of text by gathering together as many `part`s as possible. Errors if there
    /// is not at least one `part` to consume.
    fn text(&mut self) -> Result<Cow<'s, str>, Error> {
        let mut text = self.part()?;

        let mut copy = *self;
        while let Ok(part) = copy.part() {
            text += part;
            *self = copy;
        }

        Ok(text)
    }

    /// Parses any of the three possible `part`s of a text strand: a string of text, or an escaped
    /// curly brace. Errors if the token stream starts with a binder.
    fn part(&mut self) -> Result<Cow<'s, str>, Error> {
        let mut copy = *self;
        if let Ok(s) = copy.lcurly_escape() {
            *self = copy;
            return Ok(s);
        }

        let mut copy = *self;
        if let Ok(s) = copy.rcurly_escape() {
            *self = copy;
            return Ok(s);
        }

        let Lexeme(_, _, text) = self.eat(Token::Text)?;
        Ok(Cow::Borrowed(text))
    }

    /// Parses as an escaped left curly brace (two curly brace tokens).
    fn lcurly_escape(&mut self) -> Result<Cow<'s, str>, Error> {
        use Token as T;
        self.eat(T::LCurl)?;
        self.eat(T::LCurl)?;
        Ok(Cow::Borrowed("{"))
    }

    /// Parses as an escaped right curly brace (two curly brace tokens).
    fn rcurly_escape(&mut self) -> Result<Cow<'s, str>, Error> {
        use Token as T;
        self.eat(T::RCurl)?;
        self.eat(T::RCurl)?;
        Ok(Cow::Borrowed("}"))
    }

    /// Parses a binding (a text token surrounded by curly braces).
    fn bind(&mut self) -> Result<Option<syn::Type>, Error> {
        if self.lexemes.is_empty() {
            return Ok(None);
        }

        self.eat(Token::LCurl)?;
        let Lexeme(_, offset, bind) = self.eat(Token::Text)?;
        self.eat(Token::RCurl)?;

        let bind = syn::parse_str(bind).map_err(|source| Error::TypeParse { offset, source })?;
        Ok(Some(bind))
    }

    /// Consume the next token (returning it) as long as it matches `expect`.
    fn eat(&mut self, expect: Token) -> Result<Lexeme<'s>, Error> {
        let &lexeme = self
            .lexemes
            .first()
            .ok_or(Error::UnexpectedEos { expect })?;

        if lexeme.0 == expect {
            self.lexemes = &self.lexemes[1..];
            Ok(lexeme)
        } else {
            Err(Error::Unexpected {
                offset: lexeme.1,
                actual: lexeme.0,
                expect,
            })
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::Lexer;

    use super::*;

    /// Test helper for lexing and parsing a format string.
    fn parse(s: &str) -> Result<Format, Error> {
        let lexemes: Vec<_> = Lexer::new(s).collect();
        Parser::new(&lexemes).format()
    }

    /// Parse a Rust type from a string, to compare against in tests.
    fn type_(s: &str) -> syn::Type {
        syn::parse_str(s).unwrap()
    }

    #[test]
    fn test_no_binds() {
        // A simple format string with no binders will gather everything into the head.
        assert_eq!(
            parse("foo").unwrap(),
            Format {
                head: "foo".into(),
                tail: vec![]
            }
        );
    }

    #[test]
    fn test_single_bind() {
        // A binder is parsed without its surrounding binders as a type, and splits the format
        // string in two.
        assert_eq!(
            parse("foo = {Text} AND bar = 42").unwrap(),
            Format {
                head: "foo = ".into(),
                tail: vec![(type_("Text"), " AND bar = 42".into())]
            },
        );
    }

    #[test]
    fn test_multiple_binds() {
        // When there are multiple binders the parser needs to detect the gap between binders.
        assert_eq!(
            parse("foo = {Text} AND (bar < {BigInt} OR bar > 5)").unwrap(),
            Format {
                head: "foo = ".into(),
                tail: vec![
                    (type_("Text"), " AND (bar < ".into()),
                    (type_("BigInt"), " OR bar > 5)".into()),
                ],
            },
        );
    }

    #[test]
    fn test_ends_with_a_bind() {
        // If the format string ends with a binder, the parser still needs to find an empty suffix
        // binder.
        assert_eq!(
            parse("bar BETWEEN {BigInt} AND {BigInt}").unwrap(),
            Format {
                head: "bar BETWEEN ".into(),
                tail: vec![
                    (type_("BigInt"), " AND ".into()),
                    (type_("BigInt"), "".into()),
                ],
            },
        );
    }

    #[test]
    fn test_escaped_curlies() {
        // Escaped curlies are de-duplicated in the parsed output, but the parser does not break up
        // strands of format string on them.
        assert_eq!(
            parse("foo LIKE '{{bar%'").unwrap(),
            Format {
                head: "foo LIKE '{bar%'".into(),
                tail: vec![],
            },
        );
    }

    #[test]
    fn test_curly_nest() {
        // This input can be tricky to parse if the lexer treats escaped curlies as a single token.
        assert_eq!(
            parse("{{{Bool}}}").unwrap(),
            Format {
                head: "{".into(),
                tail: vec![(type_("Bool"), "}".into())],
            },
        );
    }

    #[test]
    fn test_bind_unexpected_token() {
        // Error if the binder is not properly closed.
        assert!(matches!(
            parse("{Bool{").unwrap_err(),
            Error::Unexpected {
                offset: 5,
                actual: Token::LCurl,
                expect: Token::RCurl
            },
        ));
    }

    #[test]
    fn test_bind_no_type() {
        // Error if the binder does not contain a type.
        assert!(matches!(
            parse("foo = {").unwrap_err(),
            Error::UnexpectedEos {
                expect: Token::Text,
            },
        ));
    }

    #[test]
    fn test_bind_no_rcurly() {
        // Error if the binder ends before it is closed.
        assert!(matches!(
            parse("foo = {Text").unwrap_err(),
            Error::UnexpectedEos {
                expect: Token::RCurl,
            },
        ));
    }

    #[test]
    fn test_bind_bad_type() {
        // Failure to parse the binder as a Rust type is also an error for this parser.
        assert!(matches!(
            parse("foo = {not a type}").unwrap_err(),
            Error::TypeParse { offset: 7, .. },
        ));
    }
}