sui_indexer_alt_framework/pipeline/sequential/committer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0
use std::{cmp::Ordering, collections::BTreeMap, sync::Arc};
use scoped_futures::ScopedFutureExt;
use tokio::{
sync::mpsc,
task::JoinHandle,
time::{interval, MissedTickBehavior},
};
use tokio_util::sync::CancellationToken;
use tracing::{debug, info, warn};
use crate::{
metrics::IndexerMetrics,
pipeline::{logging::WatermarkLogger, IndexedCheckpoint, WARN_PENDING_WATERMARKS},
store::{CommitterWatermark, Connection, TransactionalStore},
};
use super::{Handler, SequentialConfig};
/// The committer task gathers rows into batches and writes them to the database.
///
/// Data arrives out of order, grouped by checkpoint, on `rx`. The task orders them and waits to
/// write them until either a configural polling interval has passed (controlled by
/// `config.collect_interval()`), or `H::BATCH_SIZE` rows have been accumulated and we have
/// received the next expected checkpoint.
///
/// Writes are performed on checkpoint boundaries (more than one checkpoint can be present in a
/// single write), in a single transaction that includes all row updates and an update to the
/// watermark table.
///
/// The committer can be configured to lag behind the ingestion service by a fixed number of
/// checkpoints (configured by `checkpoint_lag`). A value of `0` means no lag.
///
/// Upon successful write, the task sends its new watermark back to the ingestion service, to
/// unblock its regulator.
///
/// The task can be shutdown using its `cancel` token or if either of its channels are closed.
pub(super) fn committer<H>(
config: SequentialConfig,
watermark: Option<CommitterWatermark>,
mut rx: mpsc::Receiver<IndexedCheckpoint<H>>,
tx: mpsc::UnboundedSender<(&'static str, u64)>,
store: H::Store,
metrics: Arc<IndexerMetrics>,
cancel: CancellationToken,
) -> JoinHandle<()>
where
H: Handler + Send + Sync + 'static,
H::Store: TransactionalStore + 'static,
{
tokio::spawn(async move {
// The `poll` interval controls the maximum time to wait between commits, regardless of the
// amount of data available.
let mut poll = interval(config.committer.collect_interval());
poll.set_missed_tick_behavior(MissedTickBehavior::Delay);
let checkpoint_lag = config.checkpoint_lag;
// Buffer to gather the next batch to write. A checkpoint's data is only added to the batch
// when it is known to come from the next checkpoint after `watermark` (the current tip of
// the batch), and data from previous checkpoints will be discarded to avoid double writes.
//
// The batch may be non-empty at top of a tick of the committer's loop if the previous
// attempt at a write failed. Attempt is incremented every time a batch write fails, and is
// reset when it succeeds.
let mut attempt = 0;
let mut batch = H::Batch::default();
let mut batch_rows = 0;
let mut batch_checkpoints = 0;
// The task keeps track of the highest (inclusive) checkpoint it has added to the batch,
// and whether that batch needs to be written out. By extension it also knows the next
// checkpoint to expect and add to the batch.
let (mut watermark, mut next_checkpoint) = if let Some(watermark) = watermark {
let next = watermark.checkpoint_hi_inclusive + 1;
(watermark, next)
} else {
(CommitterWatermark::default(), 0)
};
// The committer task will periodically output a log message at a higher log level to
// demonstrate that the pipeline is making progress.
let mut logger = WatermarkLogger::new("sequential_committer", &watermark);
// Data for checkpoint that haven't been written yet. Note that `pending_rows` includes
// rows in `batch`.
let mut pending: BTreeMap<u64, IndexedCheckpoint<H>> = BTreeMap::new();
let mut pending_rows = 0;
info!(pipeline = H::NAME, ?watermark, "Starting committer");
loop {
tokio::select! {
_ = cancel.cancelled() => {
info!(pipeline = H::NAME, "Shutdown received");
break;
}
_ = poll.tick() => {
if batch_checkpoints == 0
&& rx.is_closed()
&& rx.is_empty()
&& !can_process_pending(next_checkpoint, checkpoint_lag, &pending)
{
info!(pipeline = H::NAME, "Process closed channel and no more data to commit");
break;
}
if pending.len() > WARN_PENDING_WATERMARKS {
warn!(
pipeline = H::NAME,
pending = pending.len(),
"Pipeline has a large number of pending watermarks",
);
}
let guard = metrics
.collector_gather_latency
.with_label_values(&[H::NAME])
.start_timer();
// Push data into the next batch as long as it's from contiguous checkpoints,
// outside of the checkpoint lag and we haven't gathered information from too
// many checkpoints already.
//
// We don't worry about overall size because the handler may have optimized
// writes by combining rows, but we will limit the number of checkpoints we try
// and batch together as a way to impose some limit on the size of the batch
// (and therefore the length of the write transaction).
while batch_checkpoints < H::MAX_BATCH_CHECKPOINTS {
if !can_process_pending(next_checkpoint, checkpoint_lag, &pending) {
break;
}
let Some(entry) = pending.first_entry() else {
break;
};
match next_checkpoint.cmp(entry.key()) {
// Next pending checkpoint is from the future.
Ordering::Less => break,
// This is the next checkpoint -- include it.
Ordering::Equal => {
let indexed = entry.remove();
batch_rows += indexed.len();
batch_checkpoints += 1;
H::batch(&mut batch, indexed.values);
watermark = indexed.watermark;
next_checkpoint += 1;
}
// Next pending checkpoint is in the past, ignore it to avoid double
// writes.
Ordering::Greater => {
metrics
.total_watermarks_out_of_order
.with_label_values(&[H::NAME])
.inc();
let indexed = entry.remove();
pending_rows -= indexed.len();
}
}
}
let elapsed = guard.stop_and_record();
debug!(
pipeline = H::NAME,
elapsed_ms = elapsed * 1000.0,
rows = batch_rows,
pending = pending_rows,
"Gathered batch",
);
// If there is no new data to commit, we can skip the rest of the process. Note
// that we cannot use batch_rows for the check, since it is possible that there
// are empty checkpoints with no new rows added, but the watermark still needs
// to be updated.
if batch_checkpoints == 0 {
assert_eq!(batch_rows, 0);
continue;
}
metrics
.collector_batch_size
.with_label_values(&[H::NAME])
.observe(batch_rows as f64);
metrics
.total_committer_batches_attempted
.with_label_values(&[H::NAME])
.inc();
metrics
.watermark_epoch
.with_label_values(&[H::NAME])
.set(watermark.epoch_hi_inclusive as i64);
metrics
.watermark_checkpoint
.with_label_values(&[H::NAME])
.set(watermark.checkpoint_hi_inclusive as i64);
metrics
.watermark_transaction
.with_label_values(&[H::NAME])
.set(watermark.tx_hi as i64);
metrics
.watermark_timestamp_ms
.with_label_values(&[H::NAME])
.set(watermark.timestamp_ms_hi_inclusive as i64);
let guard = metrics
.committer_commit_latency
.with_label_values(&[H::NAME])
.start_timer();
let affected = store.transaction(|conn| {
async {
conn.set_committer_watermark(H::NAME, watermark).await?;
H::commit(&batch, conn).await
}.scope_boxed()
}).await;
let elapsed = guard.stop_and_record();
let affected = match affected {
Ok(affected) => affected,
Err(e) => {
warn!(
pipeline = H::NAME,
elapsed_ms = elapsed * 1000.0,
attempt,
committed = batch_rows,
pending = pending_rows,
"Error writing batch: {e}",
);
metrics
.total_committer_batches_failed
.with_label_values(&[H::NAME])
.inc();
attempt += 1;
continue;
}
};
debug!(
pipeline = H::NAME,
attempt,
affected,
committed = batch_rows,
pending = pending_rows,
"Wrote batch",
);
logger.log::<H>(&watermark, elapsed);
metrics
.total_committer_batches_succeeded
.with_label_values(&[H::NAME])
.inc();
metrics
.total_committer_rows_committed
.with_label_values(&[H::NAME])
.inc_by(batch_rows as u64);
metrics
.total_committer_rows_affected
.with_label_values(&[H::NAME])
.inc_by(affected as u64);
metrics
.committer_tx_rows
.with_label_values(&[H::NAME])
.observe(affected as f64);
metrics
.watermark_epoch_in_db
.with_label_values(&[H::NAME])
.set(watermark.epoch_hi_inclusive as i64);
metrics
.watermark_checkpoint_in_db
.with_label_values(&[H::NAME])
.set(watermark.checkpoint_hi_inclusive as i64);
metrics
.watermark_transaction_in_db
.with_label_values(&[H::NAME])
.set(watermark.tx_hi as i64);
metrics
.watermark_timestamp_in_db_ms
.with_label_values(&[H::NAME])
.set(watermark.timestamp_ms_hi_inclusive as i64);
// Ignore the result -- the ingestion service will close this channel
// once it is done, but there may still be checkpoints buffered that need
// processing.
let _ = tx.send((H::NAME, watermark.checkpoint_hi_inclusive));
let _ = std::mem::take(&mut batch);
pending_rows -= batch_rows;
batch_checkpoints = 0;
batch_rows = 0;
attempt = 0;
// If we could make more progress immediately, then schedule more work without
// waiting.
if can_process_pending(next_checkpoint, checkpoint_lag, &pending) {
poll.reset_immediately();
}
}
Some(indexed) = rx.recv() => {
// Although there isn't an explicit collector in the sequential pipeline,
// keeping this metric consistent with concurrent pipeline is useful
// to monitor the backpressure from committer to processor.
metrics
.total_collector_rows_received
.with_label_values(&[H::NAME])
.inc_by(indexed.len() as u64);
pending_rows += indexed.len();
pending.insert(indexed.checkpoint(), indexed);
// Once data has been inserted, check if we need to schedule a write before the
// next polling interval. This is appropriate if there are a minimum number of
// rows to write, and they are already in the batch, or we can process the next
// checkpoint to extract them.
if pending_rows < H::MIN_EAGER_ROWS {
continue;
}
if batch_checkpoints > 0
|| can_process_pending(next_checkpoint, checkpoint_lag, &pending)
{
poll.reset_immediately();
}
}
}
}
info!(pipeline = H::NAME, ?watermark, "Stopping committer");
})
}
// Tests whether the first checkpoint in the `pending` buffer can be processed immediately, which
// is subject to the following conditions:
//
// - It is at or before the `next_checkpoint` expected by the committer.
// - It is at least `checkpoint_lag` checkpoints before the last checkpoint in the buffer.
fn can_process_pending<T>(
next_checkpoint: u64,
checkpoint_lag: u64,
pending: &BTreeMap<u64, T>,
) -> bool {
let Some((&first, _)) = pending.first_key_value() else {
return false;
};
let Some((&last, _)) = pending.last_key_value() else {
return false;
};
first <= next_checkpoint && first + checkpoint_lag <= last
}