sui_indexer_alt_framework/pipeline/concurrent/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0
use std::{sync::Arc, time::Duration};
use serde::{Deserialize, Serialize};
use tokio::{sync::mpsc, task::JoinHandle};
use tokio_util::sync::CancellationToken;
use tracing::info;
use crate::{
metrics::IndexerMetrics,
store::{CommitterWatermark, Store},
types::full_checkpoint_content::CheckpointData,
FieldCount,
};
use super::{processor::processor, CommitterConfig, Processor, WatermarkPart, PIPELINE_BUFFER};
use self::{
collector::collector, commit_watermark::commit_watermark, committer::committer, pruner::pruner,
reader_watermark::reader_watermark,
};
mod collector;
mod commit_watermark;
mod committer;
mod pruner;
mod reader_watermark;
/// Handlers implement the logic for a given indexing pipeline: How to process checkpoint data (by
/// implementing [Processor]) into rows for their table, and how to write those rows to the database.
///
/// The handler is also responsible for tuning the various parameters of the pipeline (provided as
/// associated values). Reasonable defaults have been chosen to balance concurrency with memory
/// usage, but each handle may choose to override these defaults, e.g.
///
/// - Handlers that produce many small rows may wish to increase their batch/chunk/max-pending
/// sizes).
/// - Handlers that do more work during processing may wish to increase their fanout so more of it
/// can be done concurrently, to preserve throughput.
///
/// Concurrent handlers can only be used in concurrent pipelines, where checkpoint data is
/// processed and committed out-of-order and a watermark table is kept up-to-date with the latest
/// checkpoint below which all data has been committed.
///
/// Back-pressure is handled through the `MAX_PENDING_SIZE` constant -- if more than this many rows
/// build up, the collector will stop accepting new checkpoints, which will eventually propagate
/// back to the ingestion service.
#[async_trait::async_trait]
pub trait Handler: Processor<Value: FieldCount> {
type Store: Store;
/// If at least this many rows are pending, the committer will commit them eagerly.
const MIN_EAGER_ROWS: usize = 50;
/// If there are more than this many rows pending, the committer applies backpressure.
const MAX_PENDING_ROWS: usize = 5000;
/// The maximum number of watermarks that can show up in a single batch.
/// This limit exists to deal with pipelines that produce no data for a majority of
/// checkpoints -- the size of these pipeline's batches will be dominated by watermark updates.
const MAX_WATERMARK_UPDATES: usize = 10_000;
/// Take a chunk of values and commit them to the database, returning the number of rows
/// affected.
async fn commit<'a>(
values: &[Self::Value],
conn: &mut <Self::Store as Store>::Connection<'a>,
) -> anyhow::Result<usize>;
/// Clean up data between checkpoints `_from` and `_to_exclusive` (exclusive) in the database, returning
/// the number of rows affected. This function is optional, and defaults to not pruning at all.
async fn prune<'a>(
&self,
_from: u64,
_to_exclusive: u64,
_conn: &mut <Self::Store as Store>::Connection<'a>,
) -> anyhow::Result<usize> {
Ok(0)
}
}
/// Configuration for a concurrent pipeline
#[derive(Serialize, Deserialize, Debug, Clone, Default)]
pub struct ConcurrentConfig {
/// Configuration for the writer, that makes forward progress.
pub committer: CommitterConfig,
/// Configuration for the pruner, that deletes old data.
pub pruner: Option<PrunerConfig>,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct PrunerConfig {
/// How often the pruner should check whether there is any data to prune, in milliseconds.
pub interval_ms: u64,
/// How long to wait after the reader low watermark was set, until it is safe to prune up until
/// this new watermark, in milliseconds.
pub delay_ms: u64,
/// How much data to keep, this is measured in checkpoints.
pub retention: u64,
/// The maximum range to try and prune in one request, measured in checkpoints.
pub max_chunk_size: u64,
/// The max number of tasks to run in parallel for pruning.
pub prune_concurrency: u64,
}
/// Values ready to be written to the database. This is an internal type used to communicate
/// between the collector and the committer parts of the pipeline.
///
/// Values inside each batch may or may not be from the same checkpoint. Values in the same
/// checkpoint can also be split across multiple batches.
struct BatchedRows<H: Handler> {
/// The rows to write
values: Vec<H::Value>,
/// Proportions of all the watermarks that are represented in this chunk
watermark: Vec<WatermarkPart>,
}
impl PrunerConfig {
pub fn interval(&self) -> Duration {
Duration::from_millis(self.interval_ms)
}
pub fn delay(&self) -> Duration {
Duration::from_millis(self.delay_ms)
}
}
impl<H: Handler> BatchedRows<H> {
fn new() -> Self {
Self {
values: vec![],
watermark: vec![],
}
}
/// Number of rows in this batch.
fn len(&self) -> usize {
self.values.len()
}
/// The batch is full if it has more than enough values to write to the database, or more than
/// enough watermarks to update.
fn is_full(&self) -> bool {
self.values.len() >= max_chunk_rows::<H>()
|| self.watermark.len() >= H::MAX_WATERMARK_UPDATES
}
}
impl Default for PrunerConfig {
fn default() -> Self {
Self {
interval_ms: 300_000,
delay_ms: 120_000,
retention: 4_000_000,
max_chunk_size: 2_000,
prune_concurrency: 1,
}
}
}
/// Start a new concurrent (out-of-order) indexing pipeline served by the handler, `H`. Starting
/// strictly after the `watermark` (or from the beginning if no watermark was provided).
///
/// Each pipeline consists of a processor task which takes checkpoint data and breaks it down into
/// rows, ready for insertion, a collector which batches those rows into an appropriate size for
/// the database, a committer which writes the rows out concurrently, and a watermark task to
/// update the high watermark.
///
/// Committing is performed out-of-order: the pipeline may write out checkpoints out-of-order,
/// either because it received the checkpoints out-of-order or because of variance in processing
/// time.
///
/// The pipeline also maintains a row in the `watermarks` table for the pipeline which tracks the
/// watermark below which all data has been committed (modulo pruning), as long as `skip_watermark`
/// is not true.
///
/// Checkpoint data is fed into the pipeline through the `checkpoint_rx` channel, and internal
/// channels are created to communicate between its various components. The pipeline can be
/// shutdown using its `cancel` token, and will also shutdown if any of its independent tasks
/// reports an issue.
pub(crate) fn pipeline<H: Handler + Send + Sync + 'static>(
handler: H,
initial_commit_watermark: Option<CommitterWatermark>,
config: ConcurrentConfig,
skip_watermark: bool,
store: H::Store,
checkpoint_rx: mpsc::Receiver<Arc<CheckpointData>>,
metrics: Arc<IndexerMetrics>,
cancel: CancellationToken,
) -> JoinHandle<()> {
info!(
pipeline = H::NAME,
"Starting pipeline with config: {:?}", config
);
let ConcurrentConfig {
committer: committer_config,
pruner: pruner_config,
} = config;
let (processor_tx, collector_rx) = mpsc::channel(H::FANOUT + PIPELINE_BUFFER);
//docs::#buff (see docs/content/guides/developer/advanced/custom-indexer.mdx)
let (collector_tx, committer_rx) =
mpsc::channel(committer_config.write_concurrency + PIPELINE_BUFFER);
//docs::/#buff
let (committer_tx, watermark_rx) =
mpsc::channel(committer_config.write_concurrency + PIPELINE_BUFFER);
// The pruner is not connected to the rest of the tasks by channels, so it needs to be
// explicitly signalled to shutdown when the other tasks shutdown, in addition to listening to
// the global cancel signal. We achieve this by creating a child cancel token that we call
// cancel on once the committer tasks have shutdown.
let pruner_cancel = cancel.child_token();
let handler = Arc::new(handler);
let processor = processor(
handler.clone(),
checkpoint_rx,
processor_tx,
metrics.clone(),
cancel.clone(),
);
let collector = collector::<H>(
committer_config.clone(),
collector_rx,
collector_tx,
metrics.clone(),
cancel.clone(),
);
let committer = committer::<H>(
committer_config.clone(),
skip_watermark,
committer_rx,
committer_tx,
store.clone(),
metrics.clone(),
cancel.clone(),
);
let commit_watermark = commit_watermark::<H>(
initial_commit_watermark,
committer_config,
skip_watermark,
watermark_rx,
store.clone(),
metrics.clone(),
cancel,
);
let reader_watermark = reader_watermark::<H>(
pruner_config.clone(),
store.clone(),
metrics.clone(),
pruner_cancel.clone(),
);
let pruner = pruner(
handler,
pruner_config,
store,
metrics,
pruner_cancel.clone(),
);
tokio::spawn(async move {
let (_, _, _, _) = futures::join!(processor, collector, committer, commit_watermark);
pruner_cancel.cancel();
let _ = futures::join!(reader_watermark, pruner);
})
}
const fn max_chunk_rows<H: Handler>() -> usize {
if H::Value::FIELD_COUNT == 0 {
i16::MAX as usize
} else {
i16::MAX as usize / H::Value::FIELD_COUNT
}
}
#[cfg(test)]
mod tests {
use std::{sync::Arc, time::Duration};
use async_trait::async_trait;
use prometheus::Registry;
use tokio::{sync::mpsc, time::timeout};
use tokio_util::sync::CancellationToken;
use crate::{
metrics::IndexerMetrics,
pipeline::Processor,
store::CommitterWatermark,
testing::mock_store::MockStore,
types::{
full_checkpoint_content::CheckpointData,
test_checkpoint_data_builder::TestCheckpointDataBuilder,
},
FieldCount,
};
use super::*;
const TEST_TIMEOUT: Duration = Duration::from_secs(60);
const TEST_CHECKPOINT_BUFFER_SIZE: usize = 3; // Critical for back-pressure testing calculations
#[derive(Clone, Debug, FieldCount)]
struct TestValue {
checkpoint: u64,
data: u64,
}
struct DataPipeline;
impl Processor for DataPipeline {
const NAME: &'static str = "test_handler";
const FANOUT: usize = 2;
type Value = TestValue;
fn process(&self, checkpoint: &Arc<CheckpointData>) -> anyhow::Result<Vec<Self::Value>> {
let cp_num = checkpoint.checkpoint_summary.sequence_number;
// Every checkpoint will come with 2 processed values
Ok(vec![
TestValue {
checkpoint: cp_num,
data: cp_num * 10 + 1,
},
TestValue {
checkpoint: cp_num,
data: cp_num * 10 + 2,
},
])
}
}
#[async_trait]
impl Handler for DataPipeline {
type Store = MockStore;
const MIN_EAGER_ROWS: usize = 1000; // High value to disable eager batching
const MAX_PENDING_ROWS: usize = 4; // Small value to trigger back pressure quickly
const MAX_WATERMARK_UPDATES: usize = 1; // Each batch will have 1 checkpoint for an ease of testing.
async fn commit<'a>(
values: &[Self::Value],
conn: &mut crate::testing::mock_store::MockConnection<'a>,
) -> anyhow::Result<usize> {
// Group values by checkpoint
let mut grouped: std::collections::HashMap<u64, Vec<u64>> =
std::collections::HashMap::new();
for value in values {
grouped
.entry(value.checkpoint)
.or_default()
.push(value.data);
}
// Commit all data at once
conn.0.commit_data(grouped).await
}
async fn prune<'a>(
&self,
from: u64,
to_exclusive: u64,
conn: &mut crate::testing::mock_store::MockConnection<'a>,
) -> anyhow::Result<usize> {
conn.0.prune_data(from, to_exclusive)
}
}
struct TestSetup {
store: MockStore,
checkpoint_tx: mpsc::Sender<Arc<CheckpointData>>,
pipeline_handle: JoinHandle<()>,
cancel: CancellationToken,
}
impl TestSetup {
async fn new(
config: ConcurrentConfig,
store: MockStore,
initial_watermark: Option<CommitterWatermark>,
) -> Self {
let (checkpoint_tx, checkpoint_rx) = mpsc::channel(TEST_CHECKPOINT_BUFFER_SIZE);
let metrics = IndexerMetrics::new(None, &Registry::default());
let cancel = CancellationToken::new();
let skip_watermark = false;
let pipeline_handle = pipeline(
DataPipeline,
initial_watermark,
config,
skip_watermark,
store.clone(),
checkpoint_rx,
metrics,
cancel.clone(),
);
Self {
store,
checkpoint_tx,
pipeline_handle,
cancel,
}
}
async fn send_checkpoint(&self, checkpoint: u64) -> anyhow::Result<()> {
let checkpoint = Arc::new(
TestCheckpointDataBuilder::new(checkpoint)
.with_epoch(1)
.with_network_total_transactions(checkpoint * 2)
.with_timestamp_ms(1000000000 + checkpoint * 1000)
.build_checkpoint(),
);
self.checkpoint_tx.send(checkpoint).await?;
Ok(())
}
async fn shutdown(self) {
drop(self.checkpoint_tx);
self.cancel.cancel();
let _ = self.pipeline_handle.await;
}
async fn send_checkpoint_with_timeout(
&self,
checkpoint: u64,
timeout_duration: Duration,
) -> anyhow::Result<()> {
timeout(timeout_duration, self.send_checkpoint(checkpoint)).await?
}
async fn send_checkpoint_expect_timeout(
&self,
checkpoint: u64,
timeout_duration: Duration,
) {
timeout(timeout_duration, self.send_checkpoint(checkpoint))
.await
.unwrap_err(); // Panics if send succeeds
}
}
#[tokio::test]
async fn test_e2e_pipeline() {
let config = ConcurrentConfig {
pruner: Some(PrunerConfig {
interval_ms: 5_000, // Long interval to test states before pruning
delay_ms: 100, // Short delay for faster tests
retention: 3, // Keep only 3 checkpoints
..Default::default()
}),
..Default::default()
};
let store = MockStore::default();
let setup = TestSetup::new(config, store, None).await;
// Send initial checkpoints
for i in 0..3 {
setup
.send_checkpoint_with_timeout(i, Duration::from_millis(200))
.await
.unwrap();
}
// Verify all initial data is available (before any pruning)
for i in 0..3 {
let data = setup.store.wait_for_data(i, TEST_TIMEOUT).await;
assert_eq!(data, vec![i * 10 + 1, i * 10 + 2]);
}
// Add more checkpoints to trigger pruning
for i in 3..6 {
setup
.send_checkpoint_with_timeout(i, Duration::from_millis(200))
.await
.unwrap();
}
// Verify data is still available BEFORE pruning kicks in
// With long pruning interval (5s), we can safely verify data without race conditions
for i in 0..6 {
let data = setup.store.wait_for_data(i, Duration::from_secs(1)).await;
assert_eq!(data, vec![i * 10 + 1, i * 10 + 2]);
}
// Wait for pruning to occur (5s + delay + processing time)
tokio::time::sleep(Duration::from_millis(5_200)).await;
// Verify pruning has occurred
{
let data = setup.store.data.lock().unwrap();
// Verify recent checkpoints are still available
assert!(data.contains_key(&3));
assert!(data.contains_key(&4));
assert!(data.contains_key(&5));
// Verify old checkpoints are pruned
assert!(!data.contains_key(&0));
assert!(!data.contains_key(&1));
assert!(!data.contains_key(&2));
};
setup.shutdown().await;
}
#[tokio::test]
async fn test_e2e_pipeline_without_pruning() {
let config = ConcurrentConfig {
pruner: None,
..Default::default()
};
let store = MockStore::default();
let setup = TestSetup::new(config, store, None).await;
// Send several checkpoints
for i in 0..10 {
setup
.send_checkpoint_with_timeout(i, Duration::from_millis(200))
.await
.unwrap();
}
// Wait for all data to be processed and committed
let watermark = setup.store.wait_for_watermark(9, TEST_TIMEOUT).await;
// Verify ALL data was processed correctly (no pruning)
for i in 0..10 {
let data = setup.store.wait_for_data(i, Duration::from_secs(1)).await;
assert_eq!(data, vec![i * 10 + 1, i * 10 + 2]);
}
// Verify watermark progression
assert_eq!(watermark.checkpoint_hi_inclusive, 9);
assert_eq!(watermark.tx_hi, 18); // 9 * 2
assert_eq!(watermark.timestamp_ms_hi_inclusive, 1000009000); // 1000000000 + 9 * 1000
// Verify no data was pruned - all 10 checkpoints should still exist
let total_checkpoints = {
let data = setup.store.data.lock().unwrap();
data.len()
};
assert_eq!(total_checkpoints, 10);
setup.shutdown().await;
}
#[tokio::test]
async fn test_out_of_order_processing() {
let config = ConcurrentConfig::default();
let store = MockStore::default();
let setup = TestSetup::new(config, store, None).await;
// Send checkpoints out of order
let checkpoints = vec![2, 0, 4, 1, 3];
for cp in checkpoints {
setup
.send_checkpoint_with_timeout(cp, Duration::from_millis(200))
.await
.unwrap();
}
// Wait for all data to be processed
let _watermark = setup
.store
.wait_for_watermark(4, Duration::from_secs(5))
.await;
// Verify all checkpoints were processed correctly despite out-of-order arrival
for i in 0..5 {
let data = setup.store.wait_for_data(i, Duration::from_secs(1)).await;
assert_eq!(data, vec![i * 10 + 1, i * 10 + 2]);
}
setup.shutdown().await;
}
#[tokio::test]
async fn test_watermark_progression_with_gaps() {
let config = ConcurrentConfig::default();
let store = MockStore::default();
let setup = TestSetup::new(config, store, None).await;
// Send checkpoints with a gap (0, 1, 3, 4) - missing checkpoint 2
for cp in [0, 1, 3, 4] {
setup
.send_checkpoint_with_timeout(cp, Duration::from_millis(200))
.await
.unwrap();
}
// Wait for processing
tokio::time::sleep(Duration::from_secs(1)).await;
// Watermark should only progress to 1 (can't progress past the gap)
let watermark = setup.store.get_watermark();
assert_eq!(watermark.checkpoint_hi_inclusive, 1);
// Now send the missing checkpoint 2
setup
.send_checkpoint_with_timeout(2, Duration::from_millis(200))
.await
.unwrap();
// Now watermark should progress to 4
let watermark = setup.store.wait_for_watermark(4, TEST_TIMEOUT).await;
assert_eq!(watermark.checkpoint_hi_inclusive, 4);
setup.shutdown().await;
}
// ==================== BACK-PRESSURE TESTING ====================
#[tokio::test]
async fn test_back_pressure_collector_max_pending_rows() {
// Pipeline Diagram - Collector Back Pressure via MAX_PENDING_ROWS:
//
// ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
// │ Checkpoint │ ─► │ Processor │ ─► │ Collector │ ─► │ Committer │
// │ Input │ │ (FANOUT=2) │ │ │ │ │
// └────────────┘ └────────────┘ └[BOTTLENECK]┘ └────────────┘
// │ │ │
// [●●●] [●●●●●●●] [●●●●●●]
// buffer: 3 buffer: 7 buffer: 6
//
// BOTTLENECK: Collector stops accepting when pending rows ≥ MAX_PENDING_ROWS (4)
let config = ConcurrentConfig {
committer: CommitterConfig {
collect_interval_ms: 5_000, // Long interval to prevent timer-driven collection
write_concurrency: 1,
..Default::default()
},
..Default::default()
};
let store = MockStore::default();
let setup = TestSetup::new(config, store, None).await;
// Wait for initial setup
tokio::time::sleep(Duration::from_millis(200)).await;
// Pipeline capacity analysis with collector back pressure:
// Configuration: MAX_PENDING_ROWS=4, FANOUT=2, PIPELINE_BUFFER=5
//
// Channel and task breakdown:
// - Checkpoint->Processor channel: 3 slots (TEST_CHECKPOINT_BUFFER_SIZE)
// - Processor tasks: 2 tasks (FANOUT=2)
// - Processor->Collector channel: 7 slots (FANOUT=2 + PIPELINE_BUFFER=5)
// - Collector pending: 2 checkpoints × 2 values = 4 values (hits MAX_PENDING_ROWS=4)
//
// Total capacity: 3 + 2 + 7 + 2 = 14 checkpoints
// Fill pipeline to capacity - these should all succeed
for i in 0..14 {
setup
.send_checkpoint_with_timeout(i, Duration::from_millis(200))
.await
.unwrap();
}
// Checkpoint 14 should block due to MAX_PENDING_ROWS back pressure
setup
.send_checkpoint_expect_timeout(14, Duration::from_millis(200))
.await;
// Allow pipeline to drain by sending the blocked checkpoint with longer timeout
setup
.send_checkpoint_with_timeout(14, TEST_TIMEOUT)
.await
.unwrap();
// Verify data was processed correctly
let data = setup.store.wait_for_data(0, TEST_TIMEOUT).await;
assert_eq!(data, vec![1, 2]);
setup.shutdown().await;
}
#[tokio::test]
async fn test_back_pressure_committer_slow_commits() {
// Pipeline Diagram - Committer Back Pressure via Slow Database Commits:
//
// ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
// │ Checkpoint │ ─► │ Processor │ ─► │ Collector │ ─► │ Committer │
// │ Input │ │ (FANOUT=2) │ │ │ │🐌 10s Delay│
// └────────────┘ └────────────┘ └────────────┘ └[BOTTLENECK]┘
// │ │ │
// [●●●] [●●●●●●●] [●●●●●●]
// buffer: 3 buffer: 7 buffer: 6
//
// BOTTLENECK: Committer with 10s delay blocks entire pipeline
let config = ConcurrentConfig {
committer: CommitterConfig {
write_concurrency: 1, // Single committer for deterministic blocking
..Default::default()
},
..Default::default()
};
let store = MockStore::default().with_commit_delay(10_000); // 10 seconds delay
let setup = TestSetup::new(config, store, None).await;
// Pipeline capacity analysis with slow commits:
// Configuration: FANOUT=2, write_concurrency=1, PIPELINE_BUFFER=5
//
// Channel and task breakdown:
// - Checkpoint->Processor channel: 3 slots (TEST_CHECKPOINT_BUFFER_SIZE)
// - Processor tasks: 2 tasks (FANOUT=2)
// - Processor->Collector channel: 7 slots (FANOUT=2 + PIPELINE_BUFFER=5)
// - Collector->Committer channel: 6 slots (write_concurrency=1 + PIPELINE_BUFFER=5)
// - Committer task: 1 task (blocked by slow commit)
//
// Total theoretical capacity: 3 + 2 + 7 + 6 + 1 = 19 checkpoints
// Fill pipeline to theoretical capacity - these should all succeed
for i in 0..19 {
setup
.send_checkpoint_with_timeout(i, Duration::from_millis(100))
.await
.unwrap();
}
// Find the actual back pressure point
// Due to non-determinism in collector's tokio::select!, the collector may consume
// up to 2 checkpoints (filling MAX_PENDING_ROWS=4) before applying back pressure.
// This means back pressure occurs somewhere in range 19-21.
let mut back_pressure_checkpoint = None;
for checkpoint in 19..22 {
if setup
.send_checkpoint_with_timeout(checkpoint, Duration::from_millis(100))
.await
.is_err()
{
back_pressure_checkpoint = Some(checkpoint);
break;
}
}
assert!(
back_pressure_checkpoint.is_some(),
"Back pressure should occur between checkpoints 19-21"
);
// Verify that some data has been processed (pipeline is working)
setup.store.wait_for_any_data(TEST_TIMEOUT).await;
// Allow pipeline to drain by sending the blocked checkpoint with longer timeout
setup
.send_checkpoint_with_timeout(back_pressure_checkpoint.unwrap(), TEST_TIMEOUT)
.await
.unwrap();
setup.shutdown().await;
}
// ==================== FAILURE TESTING ====================
#[tokio::test]
async fn test_commit_failure_retry() {
let config = ConcurrentConfig::default();
let store = MockStore::default().with_commit_failures(2); // Fail 2 times, then succeed
let setup = TestSetup::new(config, store, None).await;
// Send a checkpoint
setup
.send_checkpoint_with_timeout(0, Duration::from_millis(200))
.await
.unwrap();
// Should eventually succeed despite initial commit failures
let _watermark = setup.store.wait_for_watermark(0, TEST_TIMEOUT).await;
// Verify data was eventually committed
let data = setup.store.wait_for_data(0, Duration::from_secs(1)).await;
assert_eq!(data, vec![1, 2]);
setup.shutdown().await;
}
#[tokio::test]
async fn test_prune_failure_retry() {
let config = ConcurrentConfig {
pruner: Some(PrunerConfig {
interval_ms: 2000, // 2 seconds interval for testing
delay_ms: 100, // Short delay
retention: 2, // Keep only 2 checkpoints
..Default::default()
}),
..Default::default()
};
// Configure prune failures for range [0, 2) - fail twice then succeed
let store = MockStore::default().with_prune_failures(0, 2, 1);
let setup = TestSetup::new(config, store, None).await;
// Send enough checkpoints to trigger pruning
for i in 0..4 {
setup
.send_checkpoint_with_timeout(i, Duration::from_millis(200))
.await
.unwrap();
}
// Verify data is still available BEFORE pruning kicks in
// With long pruning interval (5s), we can safely verify data without race conditions
for i in 0..4 {
let data = setup.store.wait_for_data(i, Duration::from_secs(1)).await;
assert_eq!(data, vec![i * 10 + 1, i * 10 + 2]);
}
// Wait for first pruning attempt (should fail) and verify no data has been pruned
setup
.store
.wait_for_prune_attempts(0, 2, 1, TEST_TIMEOUT)
.await;
{
let data = setup.store.data.lock().unwrap();
for i in 0..4 {
assert!(data.contains_key(&i));
}
};
// Wait for second pruning attempt (should succeed)
setup
.store
.wait_for_prune_attempts(0, 2, 2, TEST_TIMEOUT)
.await;
{
let data = setup.store.data.lock().unwrap();
// Verify recent checkpoints are still available
assert!(data.contains_key(&2));
assert!(data.contains_key(&3));
// Verify old checkpoints are pruned
assert!(!data.contains_key(&0));
assert!(!data.contains_key(&1));
};
setup.shutdown().await;
}
#[tokio::test]
async fn test_reader_watermark_failure_retry() {
let config = ConcurrentConfig {
pruner: Some(PrunerConfig {
interval_ms: 100, // Fast interval for testing
delay_ms: 100, // Short delay
retention: 3, // Keep 3 checkpoints
..Default::default()
}),
..Default::default()
};
// Configure reader watermark failures - fail 2 times then succeed
let store = MockStore::default().with_reader_watermark_failures(2);
let setup = TestSetup::new(config, store, None).await;
// Send checkpoints to trigger reader watermark updates
for i in 0..6 {
setup
.send_checkpoint_with_timeout(i, Duration::from_millis(200))
.await
.unwrap();
}
// Wait for processing to complete
let _watermark = setup.store.wait_for_watermark(5, TEST_TIMEOUT).await;
// Wait for reader watermark task to attempt updates (with failures and retries)
tokio::time::sleep(Duration::from_secs(2)).await;
// Verify that reader watermark was eventually updated despite failures
let watermark = setup.store.get_watermark();
assert_eq!(watermark.reader_lo, 3);
setup.shutdown().await;
}
#[tokio::test]
async fn test_database_connection_failure_retry() {
let config = ConcurrentConfig::default();
let store = MockStore::default().with_connection_failures(2); // Fail 2 times, then succeed
let setup = TestSetup::new(config, store, None).await;
// Send a checkpoint
setup
.send_checkpoint_with_timeout(0, Duration::from_millis(200))
.await
.unwrap();
// Should eventually succeed despite initial failures
let _watermark = setup.store.wait_for_watermark(0, TEST_TIMEOUT).await;
// Verify data was eventually committed
let data = setup.store.wait_for_data(0, TEST_TIMEOUT).await;
assert_eq!(data, vec![1, 2]);
setup.shutdown().await;
}
}