sui_graphql_rpc/types/checkpoint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0
use std::collections::{BTreeMap, BTreeSet, HashMap};
use super::{
base64::Base64,
cursor::{self, Page, Paginated, ScanLimited, Target},
date_time::DateTime,
digest::Digest,
epoch::Epoch,
gas::GasCostSummary,
transaction_block::{self, TransactionBlock, TransactionBlockFilter},
uint53::UInt53,
};
use crate::{connection::ScanConnection, consistency::Checkpointed};
use crate::{
data::{self, Conn, DataLoader, Db, DbConnection, QueryExecutor},
error::Error,
};
use async_graphql::{
connection::{Connection, CursorType, Edge},
dataloader::Loader,
*,
};
use diesel::{ExpressionMethods, OptionalExtension, QueryDsl};
use diesel_async::scoped_futures::ScopedFutureExt;
use fastcrypto::encoding::{Base58, Encoding};
use serde::{Deserialize, Serialize};
use sui_indexer::{
models::{checkpoints::StoredCheckpoint, raw_checkpoints::StoredRawCheckpoint},
schema::checkpoints,
schema::raw_checkpoints,
};
use sui_types::messages_checkpoint::{CertifiedCheckpointSummary, CheckpointDigest};
/// Filter either by the digest, or the sequence number, or neither, to get the latest checkpoint.
#[derive(Default, InputObject)]
pub(crate) struct CheckpointId {
pub digest: Option<Digest>,
pub sequence_number: Option<UInt53>,
}
/// `DataLoader` key for fetching `StoredRawCheckpoint` by its sequence number.
#[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
struct RawSeqNumKey {
pub sequence_number: i64,
}
/// `DataLoader` key for fetching a `Checkpoint` by its sequence number, constrained by a consistency
/// cursor.
#[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
struct SeqNumKey {
pub sequence_number: u64,
/// The digest is not used for fetching, but is used as an additional filter, to correctly
/// implement a request that sets both a sequence number and a digest.
pub digest: Option<Digest>,
pub checkpoint_viewed_at: u64,
}
/// `DataLoader` key for fetching a `Checkpoint` by its digest, constrained by a consistency cursor.
#[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
struct DigestKey {
pub digest: Digest,
pub checkpoint_viewed_at: u64,
}
#[derive(Clone)]
pub(crate) struct Checkpoint {
/// Representation of transaction data in the Indexer's Store. The indexer stores the
/// transaction data and its effects together, in one table.
pub stored: StoredCheckpoint,
/// The checkpoint_sequence_number at which this was viewed at.
pub checkpoint_viewed_at: u64,
}
pub(crate) type Cursor = cursor::JsonCursor<CheckpointCursor>;
type Query<ST, GB> = data::Query<ST, checkpoints::table, GB>;
/// The cursor returned for each `Checkpoint` in a connection's page of results. The
/// `checkpoint_viewed_at` will set the consistent upper bound for subsequent queries made on this
/// cursor.
#[derive(Serialize, Deserialize, Clone, PartialEq, Eq)]
pub(crate) struct CheckpointCursor {
/// The checkpoint sequence number this was viewed at.
#[serde(rename = "c")]
pub checkpoint_viewed_at: u64,
#[serde(rename = "s")]
pub sequence_number: u64,
}
/// Checkpoints contain finalized transactions and are used for node synchronization
/// and global transaction ordering.
#[Object]
impl Checkpoint {
/// A 32-byte hash that uniquely identifies the checkpoint contents, encoded in Base58. This
/// hash can be used to verify checkpoint contents by checking signatures against the committee,
/// Hashing contents to match digest, and checking that the previous checkpoint digest matches.
async fn digest(&self) -> Result<String> {
Ok(self.digest_impl().extend()?.base58_encode())
}
/// This checkpoint's position in the total order of finalized checkpoints, agreed upon by
/// consensus.
async fn sequence_number(&self) -> UInt53 {
self.sequence_number_impl().into()
}
/// The timestamp at which the checkpoint is agreed to have happened according to consensus.
/// Transactions that access time in this checkpoint will observe this timestamp.
async fn timestamp(&self) -> Result<DateTime> {
DateTime::from_ms(self.stored.timestamp_ms).extend()
}
/// This is an aggregation of signatures from a quorum of validators for the checkpoint
/// proposal.
async fn validator_signatures(&self) -> Base64 {
Base64::from(&self.stored.validator_signature)
}
/// The digest of the checkpoint at the previous sequence number.
async fn previous_checkpoint_digest(&self) -> Option<String> {
self.stored
.previous_checkpoint_digest
.as_ref()
.map(Base58::encode)
}
/// The total number of transaction blocks in the network by the end of this checkpoint.
async fn network_total_transactions(&self) -> Option<UInt53> {
Some(self.network_total_transactions_impl().into())
}
/// The computation cost, storage cost, storage rebate, and non-refundable storage fee
/// accumulated during this epoch, up to and including this checkpoint. These values increase
/// monotonically across checkpoints in the same epoch, and reset on epoch boundaries.
async fn rolling_gas_summary(&self) -> Option<GasCostSummary> {
Some(GasCostSummary {
computation_cost: self.stored.computation_cost as u64,
storage_cost: self.stored.storage_cost as u64,
storage_rebate: self.stored.storage_rebate as u64,
non_refundable_storage_fee: self.stored.non_refundable_storage_fee as u64,
})
}
/// The epoch this checkpoint is part of.
async fn epoch(&self, ctx: &Context<'_>) -> Result<Option<Epoch>> {
Epoch::query(
ctx,
Some(self.stored.epoch as u64),
self.checkpoint_viewed_at,
)
.await
.extend()
}
/// Transactions in this checkpoint.
///
/// `scanLimit` restricts the number of candidate transactions scanned when gathering a page of
/// results. It is required for queries that apply more than two complex filters (on function,
/// kind, sender, recipient, input object, changed object, or ids), and can be at most
/// `serviceConfig.maxScanLimit`.
///
/// When the scan limit is reached the page will be returned even if it has fewer than `first`
/// results when paginating forward (`last` when paginating backwards). If there are more
/// transactions to scan, `pageInfo.hasNextPage` (or `pageInfo.hasPreviousPage`) will be set to
/// `true`, and `PageInfo.endCursor` (or `PageInfo.startCursor`) will be set to the last
/// transaction that was scanned as opposed to the last (or first) transaction in the page.
///
/// Requesting the next (or previous) page after this cursor will resume the search, scanning
/// the next `scanLimit` many transactions in the direction of pagination, and so on until all
/// transactions in the scanning range have been visited.
///
/// By default, the scanning range consists of all transactions in this checkpoint.
async fn transaction_blocks(
&self,
ctx: &Context<'_>,
first: Option<u64>,
after: Option<transaction_block::Cursor>,
last: Option<u64>,
before: Option<transaction_block::Cursor>,
filter: Option<TransactionBlockFilter>,
scan_limit: Option<u64>,
) -> Result<ScanConnection<String, TransactionBlock>> {
let page = Page::from_params(ctx.data_unchecked(), first, after, last, before)?;
let Some(filter) = filter
.unwrap_or_default()
.intersect(TransactionBlockFilter {
at_checkpoint: Some(UInt53::from(self.stored.sequence_number as u64)),
..Default::default()
})
else {
return Ok(ScanConnection::new(false, false));
};
TransactionBlock::paginate(ctx, page, filter, self.checkpoint_viewed_at, scan_limit)
.await
.extend()
}
/// The Base64 serialized BCS bytes of CheckpointSummary for this checkpoint.
async fn bcs(&self, ctx: &Context<'_>) -> Result<Option<Base64>> {
let DataLoader(dl) = ctx.data_unchecked();
let raw_checkpoint = dl
.load_one(RawSeqNumKey {
sequence_number: self.stored.sequence_number,
})
.await?;
let summary = raw_checkpoint.map(|raw_checkpoint| {
bcs::from_bytes::<CertifiedCheckpointSummary>(&raw_checkpoint.certified_checkpoint)
.unwrap()
});
let checkpoint_bcs = summary
.map(|c| c.into_summary_and_sequence().1)
.map(|c| bcs::to_bytes(&c).unwrap());
Ok(checkpoint_bcs.map(Base64::from))
}
}
impl CheckpointId {
pub(crate) fn by_seq_num(seq_num: u64) -> Self {
CheckpointId {
sequence_number: Some(seq_num.into()),
digest: None,
}
}
}
impl Checkpoint {
pub(crate) fn sequence_number_impl(&self) -> u64 {
self.stored.sequence_number as u64
}
pub(crate) fn network_total_transactions_impl(&self) -> u64 {
self.stored.network_total_transactions as u64
}
pub(crate) fn digest_impl(&self) -> Result<CheckpointDigest, Error> {
CheckpointDigest::try_from(self.stored.checkpoint_digest.clone())
.map_err(|e| Error::Internal(format!("Failed to deserialize checkpoint digest: {e}")))
}
/// Look up a `Checkpoint` in the database, filtered by either sequence number or digest. If
/// both filters are supplied they will both be applied. If none are supplied, the latest
/// checkpoint is fetched.
pub(crate) async fn query(
ctx: &Context<'_>,
filter: CheckpointId,
checkpoint_viewed_at: u64,
) -> Result<Option<Self>, Error> {
match filter {
CheckpointId {
sequence_number: Some(sequence_number),
digest,
} => {
let DataLoader(dl) = ctx.data_unchecked();
dl.load_one(SeqNumKey {
sequence_number: sequence_number.into(),
digest,
checkpoint_viewed_at,
})
.await
}
CheckpointId {
sequence_number: None,
digest: Some(digest),
} => {
let DataLoader(dl) = ctx.data_unchecked();
dl.load_one(DigestKey {
digest,
checkpoint_viewed_at,
})
.await
}
CheckpointId {
sequence_number: None,
digest: None,
} => Checkpoint::query_latest_at(ctx.data_unchecked(), checkpoint_viewed_at).await,
}
}
/// Look up the latest `Checkpoint` from the database, optionally filtered by a consistency
/// cursor (querying for a consistency cursor in the past looks for the latest checkpoint as of
/// that cursor).
async fn query_latest_at(db: &Db, checkpoint_viewed_at: u64) -> Result<Option<Self>, Error> {
use checkpoints::dsl;
let stored: Option<StoredCheckpoint> = db
.execute(move |conn| {
async move {
conn.first(move || {
dsl::checkpoints
.filter(dsl::sequence_number.le(checkpoint_viewed_at as i64))
.order_by(dsl::sequence_number.desc())
})
.await
.optional()
}
.scope_boxed()
})
.await
.map_err(|e| Error::Internal(format!("Failed to fetch checkpoint: {e}")))?;
Ok(stored.map(|stored| Checkpoint {
stored,
checkpoint_viewed_at,
}))
}
/// Look up a `Checkpoint` in the database and retrieve its `timestamp_ms` field. This method
/// takes a connection, so that it can be used within a transaction.
pub(crate) async fn query_timestamp(
conn: &mut Conn<'_>,
seq_num: u64,
) -> Result<u64, diesel::result::Error> {
use checkpoints::dsl;
let stored: i64 = conn
.first(move || {
dsl::checkpoints
.select(dsl::timestamp_ms)
.filter(dsl::sequence_number.eq(seq_num as i64))
})
.await?;
Ok(stored as u64)
}
/// Query the database for a `page` of checkpoints. The Page uses the checkpoint sequence number
/// of the stored checkpoint and the checkpoint at which this was viewed at as the cursor, and
/// can optionally be further `filter`-ed by an epoch number (to only return checkpoints within
/// that epoch).
///
/// The `checkpoint_viewed_at` parameter represents the checkpoint sequence number at which this
/// page was queried for. Each entity returned in the connection will inherit this checkpoint,
/// so that when viewing that entity's state, it will be from the reference of this
/// checkpoint_viewed_at parameter.
///
/// If the `Page<Cursor>` is set, then this function will defer to the `checkpoint_viewed_at` in
/// the cursor if they are consistent.
pub(crate) async fn paginate(
db: &Db,
page: Page<Cursor>,
filter: Option<u64>,
checkpoint_viewed_at: u64,
) -> Result<Connection<String, Checkpoint>, Error> {
use checkpoints::dsl;
let cursor_viewed_at = page.validate_cursor_consistency()?;
let checkpoint_viewed_at = cursor_viewed_at.unwrap_or(checkpoint_viewed_at);
let (prev, next, results) = db
.execute(move |conn| {
async move {
page.paginate_query::<StoredCheckpoint, _, _, _>(
conn,
checkpoint_viewed_at,
move || {
let mut query = dsl::checkpoints.into_boxed();
query =
query.filter(dsl::sequence_number.le(checkpoint_viewed_at as i64));
if let Some(epoch) = filter {
query = query.filter(dsl::epoch.eq(epoch as i64));
}
query
},
)
.await
}
.scope_boxed()
})
.await?;
// The "checkpoint viewed at" sets a consistent upper bound for the nested queries.
let mut conn = Connection::new(prev, next);
for stored in results {
let cursor = stored.cursor(checkpoint_viewed_at).encode_cursor();
conn.edges.push(Edge::new(
cursor,
Checkpoint {
stored,
checkpoint_viewed_at,
},
));
}
Ok(conn)
}
}
impl Paginated<Cursor> for StoredCheckpoint {
type Source = checkpoints::table;
fn filter_ge<ST, GB>(cursor: &Cursor, query: Query<ST, GB>) -> Query<ST, GB> {
query.filter(checkpoints::dsl::sequence_number.ge(cursor.sequence_number as i64))
}
fn filter_le<ST, GB>(cursor: &Cursor, query: Query<ST, GB>) -> Query<ST, GB> {
query.filter(checkpoints::dsl::sequence_number.le(cursor.sequence_number as i64))
}
fn order<ST, GB>(asc: bool, query: Query<ST, GB>) -> Query<ST, GB> {
use checkpoints::dsl;
if asc {
query.order(dsl::sequence_number)
} else {
query.order(dsl::sequence_number.desc())
}
}
}
impl Target<Cursor> for StoredCheckpoint {
fn cursor(&self, checkpoint_viewed_at: u64) -> Cursor {
Cursor::new(CheckpointCursor {
checkpoint_viewed_at,
sequence_number: self.sequence_number as u64,
})
}
}
impl Checkpointed for Cursor {
fn checkpoint_viewed_at(&self) -> u64 {
self.checkpoint_viewed_at
}
}
impl ScanLimited for Cursor {}
#[async_trait::async_trait]
impl Loader<SeqNumKey> for Db {
type Value = Checkpoint;
type Error = Error;
async fn load(&self, keys: &[SeqNumKey]) -> Result<HashMap<SeqNumKey, Checkpoint>, Error> {
use checkpoints::dsl;
let checkpoint_ids: BTreeSet<_> = keys
.iter()
.filter_map(|key| {
// Filter out keys querying for checkpoints after their own consistency cursor.
(key.checkpoint_viewed_at >= key.sequence_number)
.then_some(key.sequence_number as i64)
})
.collect();
let checkpoints: Vec<StoredCheckpoint> = self
.execute(move |conn| {
async move {
conn.results(move || {
dsl::checkpoints
.filter(dsl::sequence_number.eq_any(checkpoint_ids.iter().cloned()))
})
.await
}
.scope_boxed()
})
.await
.map_err(|e| Error::Internal(format!("Failed to fetch checkpoints: {e}")))?;
let checkpoint_id_to_stored: BTreeMap<_, _> = checkpoints
.into_iter()
.map(|stored| (stored.sequence_number as u64, stored))
.collect();
Ok(keys
.iter()
.filter_map(|key| {
let stored = checkpoint_id_to_stored.get(&key.sequence_number).cloned()?;
let checkpoint = Checkpoint {
stored,
checkpoint_viewed_at: key.checkpoint_viewed_at,
};
let digest = &checkpoint.stored.checkpoint_digest;
if matches!(key.digest, Some(d) if d.as_slice() != digest) {
None
} else {
Some((*key, checkpoint))
}
})
.collect())
}
}
#[async_trait::async_trait]
impl Loader<DigestKey> for Db {
type Value = Checkpoint;
type Error = Error;
async fn load(&self, keys: &[DigestKey]) -> Result<HashMap<DigestKey, Checkpoint>, Error> {
use checkpoints::dsl;
let digests: BTreeSet<_> = keys.iter().map(|key| key.digest.to_vec()).collect();
let checkpoints: Vec<StoredCheckpoint> = self
.execute(move |conn| {
async move {
conn.results(move || {
dsl::checkpoints
.filter(dsl::checkpoint_digest.eq_any(digests.iter().cloned()))
})
.await
}
.scope_boxed()
})
.await
.map_err(|e| Error::Internal(format!("Failed to fetch checkpoints: {e}")))?;
let checkpoint_id_to_stored: BTreeMap<_, _> = checkpoints
.into_iter()
.map(|stored| (stored.checkpoint_digest.clone(), stored))
.collect();
Ok(keys
.iter()
.filter_map(|key| {
let DigestKey {
digest,
checkpoint_viewed_at,
} = *key;
let stored = checkpoint_id_to_stored.get(digest.as_slice()).cloned()?;
let checkpoint = Checkpoint {
stored,
checkpoint_viewed_at,
};
// Filter by key's checkpoint viewed at here. Doing this in memory because it should
// be quite rare that this query actually filters something, but encoding it in SQL
// is complicated.
let seq_num = checkpoint.stored.sequence_number as u64;
(checkpoint_viewed_at >= seq_num).then_some((*key, checkpoint))
})
.collect())
}
}
#[async_trait::async_trait]
impl Loader<RawSeqNumKey> for Db {
type Value = StoredRawCheckpoint;
type Error = Error;
async fn load(
&self,
keys: &[RawSeqNumKey],
) -> Result<HashMap<RawSeqNumKey, StoredRawCheckpoint>, Error> {
use raw_checkpoints::dsl;
let checkpoint_ids = keys
.iter()
.map(|key| key.sequence_number)
.collect::<Vec<_>>();
let raw_checkpoints: Vec<StoredRawCheckpoint> = self
.execute(move |conn| {
async move {
conn.results(move || {
dsl::raw_checkpoints
.filter(dsl::sequence_number.eq_any(checkpoint_ids.iter().cloned()))
})
.await
}
.scope_boxed()
})
.await
.map_err(|e| Error::Internal(format!("Failed to fetch raw checkpoints: {e}")))?;
Ok(raw_checkpoints
.into_iter()
.map(|raw| {
(
RawSeqNumKey {
sequence_number: raw.sequence_number,
},
raw,
)
})
.collect())
}
}