sui_core/validator_client_monitor/
monitor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

use crate::authority_aggregator::AuthorityAggregator;
use crate::authority_client::AuthorityAPI;
use crate::validator_client_monitor::stats::ClientObservedStats;
use crate::validator_client_monitor::{
    metrics::ValidatorClientMetrics, OperationFeedback, OperationType,
};
use arc_swap::ArcSwap;
use parking_lot::RwLock;
use rand::seq::SliceRandom;
use std::collections::HashMap;
use std::{
    sync::Arc,
    time::{Duration, Instant},
};
use strum::IntoEnumIterator;
use sui_config::validator_client_monitor_config::ValidatorClientMonitorConfig;
use sui_types::committee::Committee;
use sui_types::messages_grpc::TxType;
use sui_types::{base_types::AuthorityName, messages_grpc::ValidatorHealthRequest};
use tokio::{
    task::JoinSet,
    time::{interval, timeout},
};
use tracing::{debug, info, warn};

/// Monitors validator interactions from the client's perspective.
///
/// This component:
/// - Collects client-side metrics from TransactionDriver operations
/// - Runs periodic health checks on all validators from the client
/// - Maintains client-observed statistics for reliability and latency
/// - Provides intelligent validator selection based on client-observed performance
/// - Handles epoch changes by cleaning up stale validator data
///
/// The monitor runs a background task for health checks and uses
/// moving averages to smooth client-side measurements.
pub struct ValidatorClientMonitor<A: Clone> {
    config: ValidatorClientMonitorConfig,
    metrics: Arc<ValidatorClientMetrics>,
    client_stats: RwLock<ClientObservedStats>,
    authority_aggregator: Arc<ArcSwap<AuthorityAggregator<A>>>,
    cached_latencies: RwLock<HashMap<TxType, HashMap<AuthorityName, Duration>>>,
}

impl<A> ValidatorClientMonitor<A>
where
    A: AuthorityAPI + Send + Sync + 'static + Clone,
{
    pub fn new(
        config: ValidatorClientMonitorConfig,
        metrics: Arc<ValidatorClientMetrics>,
        authority_aggregator: Arc<ArcSwap<AuthorityAggregator<A>>>,
    ) -> Arc<Self> {
        info!(
            "Validator client monitor starting with config: {:?}",
            config
        );

        let monitor = Arc::new(Self {
            config: config.clone(),
            metrics,
            client_stats: RwLock::new(ClientObservedStats::new(config)),
            authority_aggregator,
            cached_latencies: RwLock::new(HashMap::new()),
        });

        let monitor_clone = monitor.clone();
        tokio::spawn(async move {
            monitor_clone.run_health_checks().await;
        });

        monitor
    }

    #[cfg(test)]
    pub fn new_for_test(authority_aggregator: Arc<AuthorityAggregator<A>>) -> Arc<Self> {
        use prometheus::Registry;

        Self::new(
            ValidatorClientMonitorConfig::default(),
            Arc::new(ValidatorClientMetrics::new(&Registry::default())),
            Arc::new(ArcSwap::new(authority_aggregator)),
        )
    }

    /// Background task that runs periodic health checks on all validators.
    ///
    /// Sends health check requests to all validators in parallel and records
    /// the results (success/failure and latency). Timeouts are treated as
    /// failures without recording latency to avoid polluting latency statistics.
    async fn run_health_checks(self: Arc<Self>) {
        let mut interval = interval(self.config.health_check_interval);

        loop {
            interval.tick().await;

            let authority_agg = self.authority_aggregator.load();

            let current_validators: Vec<_> = authority_agg.committee.names().cloned().collect();
            self.client_stats
                .write()
                .retain_validators(&current_validators);

            let mut tasks = JoinSet::new();

            for (name, safe_client) in authority_agg.authority_clients.iter() {
                let name = *name;
                let display_name = authority_agg.get_display_name(&name);
                let client = safe_client.clone();
                let timeout_duration = self.config.health_check_timeout;
                let monitor = self.clone();

                tasks.spawn(async move {
                    let start = Instant::now();
                    match timeout(
                        timeout_duration,
                        client.validator_health(ValidatorHealthRequest {}),
                    )
                    .await
                    {
                        // TODO: Actually use the response details.
                        Ok(Ok(_response)) => {
                            let latency = start.elapsed();
                            monitor.record_interaction_result(OperationFeedback {
                                authority_name: name,
                                display_name: display_name.clone(),
                                operation: OperationType::HealthCheck,
                                ping_type: None,
                                result: Ok(latency),
                            });
                        }
                        Ok(Err(_)) => {
                            let _latency = start.elapsed();
                            monitor.record_interaction_result(OperationFeedback {
                                authority_name: name,
                                display_name: display_name.clone(),
                                operation: OperationType::HealthCheck,
                                ping_type: None,
                                result: Err(()),
                            });
                        }
                        Err(_) => {
                            monitor.record_interaction_result(OperationFeedback {
                                authority_name: name,
                                display_name,
                                operation: OperationType::HealthCheck,
                                ping_type: None,
                                result: Err(()),
                            });
                        }
                    }
                });
            }

            while let Some(result) = tasks.join_next().await {
                if let Err(e) = result {
                    warn!("Health check task failed: {}", e);
                }
            }

            self.update_cached_latencies(&authority_agg);
        }
    }
}

impl<A: Clone> ValidatorClientMonitor<A> {
    /// Calculate and cache latencies for all validators.
    ///
    /// This method is called periodically after health checks complete to update
    /// the cached validator latencies. Those are the end to end latencies as calculated for each validator
    /// taking into account the reliability of the validator.
    fn update_cached_latencies(&self, authority_agg: &AuthorityAggregator<A>) {
        let committee = &authority_agg.committee;
        let mut cached_latencies = self.cached_latencies.write();

        for tx_type in TxType::iter() {
            let latencies_map = self
                .client_stats
                .read()
                .get_all_validator_stats(committee, tx_type);

            for (validator, latency) in latencies_map.iter() {
                debug!(
                    "Validator {}, tx type {}: latency {}",
                    validator,
                    tx_type.as_str(),
                    latency.as_secs_f64()
                );
                let display_name = authority_agg.get_display_name(validator);
                self.metrics
                    .performance
                    .with_label_values(&[&display_name, tx_type.as_str()])
                    .set(latency.as_secs_f64());
            }

            cached_latencies.insert(tx_type, latencies_map);
        }
    }

    /// Record client-observed interaction result with a validator.
    ///
    /// Records operation results including success/failure status and latency
    /// from the client's perspective. Updates both Prometheus metrics and
    /// internal client statistics. This is the primary interface for the
    /// TransactionDriver to report client-observed validator interactions.
    /// TODO: Consider adding a byzantine flag to the feedback.
    pub fn record_interaction_result(&self, feedback: OperationFeedback) {
        let operation_str = match feedback.operation {
            OperationType::Submit => "submit",
            OperationType::Effects => "effects",
            OperationType::HealthCheck => "health_check",
            OperationType::FastPath => "fast_path",
            OperationType::Consensus => "consensus",
        };
        let ping_label = if feedback.ping_type.is_some() {
            "true"
        } else {
            "false"
        };

        match feedback.result {
            Ok(latency) => {
                self.metrics
                    .observed_latency
                    .with_label_values(&[&feedback.display_name, operation_str, ping_label])
                    .observe(latency.as_secs_f64());
                self.metrics
                    .operation_success
                    .with_label_values(&[&feedback.display_name, operation_str, ping_label])
                    .inc();
            }
            Err(()) => {
                self.metrics
                    .operation_failure
                    .with_label_values(&[&feedback.display_name, operation_str, ping_label])
                    .inc();
            }
        }

        let mut client_stats = self.client_stats.write();
        client_stats.record_interaction_result(feedback);
    }

    /// Select validators based on client-observed performance for the given transaction type.
    ///
    /// The current committee is passed in to ensure this function has the latest committee information.
    ///
    /// Also the tx type is passed in so that we can select validators based on their respective latencies
    /// for the transaction type.
    ///
    /// Validators with latencies within `delta` of the lowest latency in the given transaction type
    /// are shuffled, to balance the load among the fastest validators.
    ///
    /// Returns a vector containing all validators, where
    /// 1. Fast validators within `delta` of the lowest latency are shuffled.
    /// 2. Remaining slow validators are sorted by latency in ascending order.
    pub fn select_shuffled_preferred_validators(
        &self,
        committee: &Committee,
        tx_type: TxType,
        delta: f64,
    ) -> Vec<AuthorityName> {
        let mut rng = rand::thread_rng();

        let cached_latencies = self.cached_latencies.read();
        let Some(cached_latencies) = cached_latencies.get(&tx_type) else {
            let mut validators: Vec<_> = committee.names().cloned().collect();
            validators.shuffle(&mut rng);
            return validators;
        };

        // Since the cached latencies are updated periodically, it is possible that it was ran on
        // an out-of-date committee.
        let mut validator_with_latencies: Vec<_> = committee
            .names()
            .map(|v| {
                (
                    *v,
                    cached_latencies.get(v).cloned().unwrap_or(Duration::ZERO),
                )
            })
            .collect();
        if validator_with_latencies.is_empty() {
            return vec![];
        }
        // Shuffle the validators to balance the load among validators with the same latency.
        validator_with_latencies.shuffle(&mut rng);
        // Sort by latency in ascending order. We want to select the validators with the lowest latencies.
        validator_with_latencies.sort_by_key(|(_, latency)| *latency);

        // Shuffle the validators within delta of the lowest latency, for load balancing.
        let lowest_latency = validator_with_latencies[0].1;
        let threshold = lowest_latency.mul_f64(1.0 + delta);
        let k = validator_with_latencies
            .iter()
            .enumerate()
            .find(|(_, (_, latency))| *latency > threshold)
            .map(|(i, _)| i)
            .unwrap_or(validator_with_latencies.len());
        validator_with_latencies[..k].shuffle(&mut rng);
        self.metrics
            .shuffled_validators
            .with_label_values(&[tx_type.as_str()])
            .observe(k as f64);

        validator_with_latencies
            .into_iter()
            .map(|(v, _)| v)
            .collect()
    }

    #[cfg(test)]
    pub fn force_update_cached_latencies(&self, authority_agg: &AuthorityAggregator<A>) {
        self.update_cached_latencies(authority_agg);
    }

    #[cfg(test)]
    pub fn get_client_stats_len(&self) -> usize {
        self.client_stats.read().validator_stats.len()
    }

    #[cfg(test)]
    pub fn has_validator_stats(&self, validator: &AuthorityName) -> bool {
        self.client_stats
            .read()
            .validator_stats
            .contains_key(validator)
    }
}