sui_core/execution_cache/
object_locks.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

use crate::authority::authority_per_epoch_store::{AuthorityPerEpochStore, LockDetails};
use dashmap::mapref::entry::Entry as DashMapEntry;
use dashmap::DashMap;
use mysten_common::*;
use sui_types::base_types::{ObjectID, ObjectRef};
use sui_types::digests::TransactionDigest;
use sui_types::error::{SuiError, SuiResult, UserInputError};
use sui_types::object::Object;
use sui_types::storage::ObjectStore;
use sui_types::transaction::VerifiedSignedTransaction;
use tracing::{debug, info, instrument, trace};

use super::writeback_cache::WritebackCache;

type RefCount = usize;

pub(super) struct ObjectLocks {
    // When acquire transaction locks, lock entries are briefly inserted into this map. The map
    // exists to provide atomic test-and-set operations on the locks. After all locks have been inserted
    // into the map, they are written to the db, and then all locks are removed from the map.
    //
    // After a transaction has been executed, newly created objects are available to be locked.
    // But, because of crash recovery, we cannot rule out that a lock may already exist in the db for
    // those objects. Therefore we do a db read for each object we are locking.
    //
    // TODO: find a strategy to allow us to avoid db reads for each object.
    locked_transactions: DashMap<ObjectRef, (RefCount, LockDetails)>,
}

impl ObjectLocks {
    pub fn new() -> Self {
        Self {
            locked_transactions: DashMap::new(),
        }
    }

    pub(crate) fn get_transaction_lock(
        &self,
        obj_ref: &ObjectRef,
        epoch_store: &AuthorityPerEpochStore,
    ) -> SuiResult<Option<LockDetails>> {
        // We don't consult the in-memory state here. We are only interested in state that
        // has been committed to the db. This is because in memory state is reverted
        // if the transaction is not successfully locked.
        epoch_store.tables()?.get_locked_transaction(obj_ref)
    }

    /// Attempts to atomically test-and-set a transaction lock on an object.
    /// If the lock is already set to a conflicting transaction, an error is returned.
    /// If the lock is not set, or is already set to the same transaction, the lock is
    /// set.
    pub(crate) fn try_set_transaction_lock(
        &self,
        obj_ref: &ObjectRef,
        new_lock: LockDetails,
        epoch_store: &AuthorityPerEpochStore,
    ) -> SuiResult {
        // entry holds a lock on the dashmap shard, so this function operates atomicly
        let entry = self.locked_transactions.entry(*obj_ref);

        // TODO: currently, the common case for this code is that we will miss the cache
        // and read from the db. It is difficult to implement negative caching, since we
        // may have restarted, in which case there could be locks in the db that we do
        // not have in the cache. We may want to explore strategies for proving there
        // cannot be a lock in the db that we do not know about. Two possibilities are:
        //
        // 1. Read all locks into memory at startup (and keep them there). The lifetime
        //    of locks is relatively short in the common case, so this might be feasible.
        // 2. Find some strategy to distinguish between the cases where we are re-executing
        //    old transactions after restarting vs executing transactions that we have never
        //    seen before. The output objects of novel transactions cannot previously have
        //    been locked on this validator.
        //
        // Solving this is not terribly important as it is not in the execution path, and
        // hence only improves the latency of transaction signing, not transaction execution
        let prev_lock = match entry {
            DashMapEntry::Vacant(vacant) => {
                let tables = epoch_store.tables()?;
                if let Some(lock_details) = tables.get_locked_transaction(obj_ref)? {
                    trace!("read lock from db: {:?}", lock_details);
                    vacant.insert((1, lock_details));
                    lock_details
                } else {
                    trace!("set lock: {:?}", new_lock);
                    vacant.insert((1, new_lock));
                    new_lock
                }
            }
            DashMapEntry::Occupied(mut occupied) => {
                occupied.get_mut().0 += 1;
                occupied.get().1
            }
        };

        if prev_lock != new_lock {
            debug!(
                "lock conflict detected for {:?}: {:?} != {:?}",
                obj_ref, prev_lock, new_lock
            );
            Err(SuiError::ObjectLockConflict {
                obj_ref: *obj_ref,
                pending_transaction: prev_lock,
            })
        } else {
            Ok(())
        }
    }

    pub(crate) fn clear(&self) {
        info!("clearing old transaction locks");
        self.locked_transactions.clear();
    }

    fn verify_live_object(obj_ref: &ObjectRef, live_object: &Object) -> SuiResult {
        debug_assert_eq!(obj_ref.0, live_object.id());
        if obj_ref.1 != live_object.version() {
            debug!(
                "object version unavailable for consumption: {:?} (current: {})",
                obj_ref,
                live_object.version()
            );
            return Err(SuiError::UserInputError {
                error: UserInputError::ObjectVersionUnavailableForConsumption {
                    provided_obj_ref: *obj_ref,
                    current_version: live_object.version(),
                },
            });
        }

        let live_digest = live_object.digest();
        if obj_ref.2 != live_digest {
            return Err(SuiError::UserInputError {
                error: UserInputError::InvalidObjectDigest {
                    object_id: obj_ref.0,
                    expected_digest: live_digest,
                },
            });
        }

        Ok(())
    }

    fn clear_cached_locks(&self, locks: &[(ObjectRef, LockDetails)]) {
        for (obj_ref, lock) in locks {
            let entry = self.locked_transactions.entry(*obj_ref);
            let mut occupied = match entry {
                DashMapEntry::Vacant(_) => {
                    debug_fatal!("lock must exist for object: {:?}", obj_ref);
                    continue;
                }
                DashMapEntry::Occupied(occupied) => occupied,
            };

            if occupied.get().1 == *lock {
                occupied.get_mut().0 -= 1;
                if occupied.get().0 == 0 {
                    trace!("clearing lock: {:?}", lock);
                    occupied.remove();
                }
            } else {
                // this is impossible because the only case in which we overwrite a
                // lock is when the lock is from a previous epoch. but we are holding
                // execution_lock, so the epoch cannot have changed.
                panic!("lock was changed since we set it");
            }
        }
    }

    fn multi_get_objects_must_exist(
        cache: &WritebackCache,
        object_ids: &[ObjectID],
    ) -> SuiResult<Vec<Object>> {
        let objects = cache.multi_get_objects(object_ids);
        let mut result = Vec::with_capacity(objects.len());
        for (i, object) in objects.into_iter().enumerate() {
            if let Some(object) = object {
                result.push(object);
            } else {
                return Err(SuiError::UserInputError {
                    error: UserInputError::ObjectNotFound {
                        object_id: object_ids[i],
                        version: None,
                    },
                });
            }
        }
        Ok(result)
    }

    #[instrument(level = "debug", skip_all)]
    pub(crate) fn acquire_transaction_locks(
        &self,
        cache: &WritebackCache,
        epoch_store: &AuthorityPerEpochStore,
        owned_input_objects: &[ObjectRef],
        tx_digest: TransactionDigest,
        signed_transaction: Option<VerifiedSignedTransaction>,
    ) -> SuiResult {
        let object_ids = owned_input_objects.iter().map(|o| o.0).collect::<Vec<_>>();
        let live_objects = Self::multi_get_objects_must_exist(cache, &object_ids)?;

        // Only live objects can be locked
        for (obj_ref, live_object) in owned_input_objects.iter().zip(live_objects.iter()) {
            Self::verify_live_object(obj_ref, live_object)?;
        }

        let mut locks_to_write: Vec<(_, LockDetails)> =
            Vec::with_capacity(owned_input_objects.len());

        // Sort the objects before locking. This is not required by the protocol (since it's okay to
        // reject any equivocating tx). However, this does prevent a confusing error on the client.
        // Consider the case:
        //   TX1: [o1, o2];
        //   TX2: [o2, o1];
        // If two threads race to acquire these locks, they might both acquire the first object, then
        // error when trying to acquire the second. The error returned to the client would say that there
        // is a conflicting tx on that object, but in fact neither object was locked and the tx was never
        // signed. If one client then retries, they will succeed (counterintuitively).
        let owned_input_objects = {
            let mut o = owned_input_objects.to_vec();
            o.sort_by_key(|o| o.0);
            o
        };

        // Note that this function does not have to operate atomically. If there are two racing threads,
        // then they are either trying to lock the same transaction (in which case both will succeed),
        // or they are trying to lock the same object in two different transactions, in which case
        // the sender has equivocated, and we are under no obligation to help them form a cert.
        for obj_ref in owned_input_objects.iter() {
            match self.try_set_transaction_lock(obj_ref, tx_digest, epoch_store) {
                Ok(()) => locks_to_write.push((*obj_ref, tx_digest)),
                Err(e) => {
                    // revert all pending writes and return error
                    // Note that reverting is not required for liveness, since a well formed and un-equivocating
                    // txn cannot fail to acquire locks.
                    // However, reverting is easy enough to do in this implementation that we do it anyway.
                    self.clear_cached_locks(&locks_to_write);
                    return Err(e);
                }
            }
        }

        // commit all writes to DB
        epoch_store
            .tables()?
            .write_transaction_locks(signed_transaction, locks_to_write.iter().cloned())?;

        // remove pending locks from unbounded storage
        self.clear_cached_locks(&locks_to_write);

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use crate::execution_cache::{
        writeback_cache::writeback_cache_tests::Scenario, ExecutionCacheWrite,
    };

    #[tokio::test]
    async fn test_transaction_locks_are_exclusive() {
        telemetry_subscribers::init_for_testing();
        Scenario::iterate(|mut s| async move {
            s.with_created(&[1, 2, 3]);
            s.do_tx().await;

            s.with_mutated(&[1, 2, 3]);
            s.do_tx().await;

            let new1 = s.obj_ref(1);
            let new2 = s.obj_ref(2);
            let new3 = s.obj_ref(3);

            s.with_mutated(&[1, 2, 3]); // begin forming a tx but never execute it
            let outputs = s.take_outputs();

            let tx1 = s.make_signed_transaction(&outputs.transaction);

            s.cache
                .acquire_transaction_locks(&s.epoch_store, &[new1, new2], *tx1.digest(), Some(tx1))
                .expect("locks should be available");

            // this tx doesn't use the actual objects in question, but we just need something
            // to insert into the table.
            s.with_created(&[4, 5]);
            let tx2 = s.take_outputs().transaction.clone();
            let tx2 = s.make_signed_transaction(&tx2);

            // both locks are held by tx1, so this should fail
            s.cache
                .acquire_transaction_locks(
                    &s.epoch_store,
                    &[new1, new2],
                    *tx2.digest(),
                    Some(tx2.clone()),
                )
                .unwrap_err();

            // new3 is lockable, but new2 is not, so this should fail
            s.cache
                .acquire_transaction_locks(
                    &s.epoch_store,
                    &[new3, new2],
                    *tx2.digest(),
                    Some(tx2.clone()),
                )
                .unwrap_err();

            // new3 is unlocked
            s.cache
                .acquire_transaction_locks(
                    &s.epoch_store,
                    &[new3],
                    *tx2.digest(),
                    Some(tx2.clone()),
                )
                .expect("new3 should be unlocked");
        })
        .await;
    }

    #[tokio::test]
    async fn test_transaction_locks_are_durable() {
        telemetry_subscribers::init_for_testing();
        Scenario::iterate(|mut s| async move {
            s.with_created(&[1, 2]);
            s.do_tx().await;

            let old2 = s.obj_ref(2);

            s.with_mutated(&[1, 2]);
            s.do_tx().await;

            let new1 = s.obj_ref(1);
            let new2 = s.obj_ref(2);

            s.with_mutated(&[1, 2]); // begin forming a tx but never execute it
            let outputs = s.take_outputs();

            let tx = s.make_signed_transaction(&outputs.transaction);

            // fails because we are referring to an old object
            s.cache
                .acquire_transaction_locks(
                    &s.epoch_store,
                    &[new1, old2],
                    *tx.digest(),
                    Some(tx.clone()),
                )
                .unwrap_err();

            // succeeds because the above call releases the lock on new1 after failing
            // to get the lock on old2
            s.cache
                .acquire_transaction_locks(
                    &s.epoch_store,
                    &[new1, new2],
                    *tx.digest(),
                    Some(tx.clone()),
                )
                .expect("new1 should be unlocked after revert");
        })
        .await;
    }

    #[tokio::test]
    async fn test_acquire_transaction_locks_revert() {
        telemetry_subscribers::init_for_testing();
        Scenario::iterate(|mut s| async move {
            s.with_created(&[1, 2]);
            s.do_tx().await;

            let old2 = s.obj_ref(2);

            s.with_mutated(&[1, 2]);
            s.do_tx().await;

            let new1 = s.obj_ref(1);
            let new2 = s.obj_ref(2);

            s.with_mutated(&[1, 2]); // begin forming a tx but never execute it
            let outputs = s.take_outputs();

            let tx = s.make_signed_transaction(&outputs.transaction);

            // fails because we are referring to an old object
            s.cache
                .acquire_transaction_locks(
                    &s.epoch_store,
                    &[new1, old2],
                    *tx.digest(),
                    Some(tx.clone()),
                )
                .unwrap_err();

            // this tx doesn't use the actual objects in question, but we just need something
            // to insert into the table.
            s.with_created(&[4, 5]);
            let tx2 = s.take_outputs().transaction.clone();
            let tx2 = s.make_signed_transaction(&tx2);

            // succeeds because the above call releases the lock on new1 after failing
            // to get the lock on old2
            s.cache
                .acquire_transaction_locks(&s.epoch_store, &[new1, new2], *tx2.digest(), Some(tx2))
                .expect("new1 should be unlocked after revert");
        })
        .await;
    }

    #[tokio::test]
    async fn test_acquire_transaction_locks_is_sync() {
        telemetry_subscribers::init_for_testing();
        Scenario::iterate(|mut s| async move {
            s.with_created(&[1, 2]);
            s.do_tx().await;

            let objects: Vec<_> = vec![s.object(1), s.object(2)]
                .into_iter()
                .map(|o| o.compute_object_reference())
                .collect();

            s.with_mutated(&[1, 2]);
            let outputs = s.take_outputs();

            let tx2 = s.make_signed_transaction(&outputs.transaction);
            // assert that acquire_transaction_locks is sync in non-simtest, which causes the
            // fail_point_async! macros above to be elided
            s.cache
                .acquire_transaction_locks(
                    &s.epoch_store,
                    &objects,
                    *tx2.digest(),
                    Some(tx2.clone()),
                )
                .unwrap();
        })
        .await;
    }
}