sui_core/execution_cache/object_locks.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0
use crate::authority::authority_per_epoch_store::{AuthorityPerEpochStore, LockDetails};
use dashmap::mapref::entry::Entry as DashMapEntry;
use dashmap::DashMap;
use mysten_common::*;
use sui_types::base_types::{ObjectID, ObjectRef};
use sui_types::digests::TransactionDigest;
use sui_types::error::{SuiError, SuiResult, UserInputError};
use sui_types::object::Object;
use sui_types::storage::ObjectStore;
use sui_types::transaction::VerifiedSignedTransaction;
use tracing::{debug, info, instrument, trace};
use super::writeback_cache::WritebackCache;
type RefCount = usize;
pub(super) struct ObjectLocks {
// When acquire transaction locks, lock entries are briefly inserted into this map. The map
// exists to provide atomic test-and-set operations on the locks. After all locks have been inserted
// into the map, they are written to the db, and then all locks are removed from the map.
//
// After a transaction has been executed, newly created objects are available to be locked.
// But, because of crash recovery, we cannot rule out that a lock may already exist in the db for
// those objects. Therefore we do a db read for each object we are locking.
//
// TODO: find a strategy to allow us to avoid db reads for each object.
locked_transactions: DashMap<ObjectRef, (RefCount, LockDetails)>,
}
impl ObjectLocks {
pub fn new() -> Self {
Self {
locked_transactions: DashMap::new(),
}
}
pub(crate) fn get_transaction_lock(
&self,
obj_ref: &ObjectRef,
epoch_store: &AuthorityPerEpochStore,
) -> SuiResult<Option<LockDetails>> {
// We don't consult the in-memory state here. We are only interested in state that
// has been committed to the db. This is because in memory state is reverted
// if the transaction is not successfully locked.
epoch_store.tables()?.get_locked_transaction(obj_ref)
}
/// Attempts to atomically test-and-set a transaction lock on an object.
/// If the lock is already set to a conflicting transaction, an error is returned.
/// If the lock is not set, or is already set to the same transaction, the lock is
/// set.
pub(crate) fn try_set_transaction_lock(
&self,
obj_ref: &ObjectRef,
new_lock: LockDetails,
epoch_store: &AuthorityPerEpochStore,
) -> SuiResult {
// entry holds a lock on the dashmap shard, so this function operates atomicly
let entry = self.locked_transactions.entry(*obj_ref);
// TODO: currently, the common case for this code is that we will miss the cache
// and read from the db. It is difficult to implement negative caching, since we
// may have restarted, in which case there could be locks in the db that we do
// not have in the cache. We may want to explore strategies for proving there
// cannot be a lock in the db that we do not know about. Two possibilities are:
//
// 1. Read all locks into memory at startup (and keep them there). The lifetime
// of locks is relatively short in the common case, so this might be feasible.
// 2. Find some strategy to distinguish between the cases where we are re-executing
// old transactions after restarting vs executing transactions that we have never
// seen before. The output objects of novel transactions cannot previously have
// been locked on this validator.
//
// Solving this is not terribly important as it is not in the execution path, and
// hence only improves the latency of transaction signing, not transaction execution
let prev_lock = match entry {
DashMapEntry::Vacant(vacant) => {
let tables = epoch_store.tables()?;
if let Some(lock_details) = tables.get_locked_transaction(obj_ref)? {
trace!("read lock from db: {:?}", lock_details);
vacant.insert((1, lock_details));
lock_details
} else {
trace!("set lock: {:?}", new_lock);
vacant.insert((1, new_lock));
new_lock
}
}
DashMapEntry::Occupied(mut occupied) => {
occupied.get_mut().0 += 1;
occupied.get().1
}
};
if prev_lock != new_lock {
debug!(
"lock conflict detected for {:?}: {:?} != {:?}",
obj_ref, prev_lock, new_lock
);
Err(SuiError::ObjectLockConflict {
obj_ref: *obj_ref,
pending_transaction: prev_lock,
})
} else {
Ok(())
}
}
pub(crate) fn clear(&self) {
info!("clearing old transaction locks");
self.locked_transactions.clear();
}
fn verify_live_object(obj_ref: &ObjectRef, live_object: &Object) -> SuiResult {
debug_assert_eq!(obj_ref.0, live_object.id());
if obj_ref.1 != live_object.version() {
debug!(
"object version unavailable for consumption: {:?} (current: {})",
obj_ref,
live_object.version()
);
return Err(SuiError::UserInputError {
error: UserInputError::ObjectVersionUnavailableForConsumption {
provided_obj_ref: *obj_ref,
current_version: live_object.version(),
},
});
}
let live_digest = live_object.digest();
if obj_ref.2 != live_digest {
return Err(SuiError::UserInputError {
error: UserInputError::InvalidObjectDigest {
object_id: obj_ref.0,
expected_digest: live_digest,
},
});
}
Ok(())
}
fn clear_cached_locks(&self, locks: &[(ObjectRef, LockDetails)]) {
for (obj_ref, lock) in locks {
let entry = self.locked_transactions.entry(*obj_ref);
let mut occupied = match entry {
DashMapEntry::Vacant(_) => {
debug_fatal!("lock must exist for object: {:?}", obj_ref);
continue;
}
DashMapEntry::Occupied(occupied) => occupied,
};
if occupied.get().1 == *lock {
occupied.get_mut().0 -= 1;
if occupied.get().0 == 0 {
trace!("clearing lock: {:?}", lock);
occupied.remove();
}
} else {
// this is impossible because the only case in which we overwrite a
// lock is when the lock is from a previous epoch. but we are holding
// execution_lock, so the epoch cannot have changed.
panic!("lock was changed since we set it");
}
}
}
fn multi_get_objects_must_exist(
cache: &WritebackCache,
object_ids: &[ObjectID],
) -> SuiResult<Vec<Object>> {
let objects = cache.multi_get_objects(object_ids);
let mut result = Vec::with_capacity(objects.len());
for (i, object) in objects.into_iter().enumerate() {
if let Some(object) = object {
result.push(object);
} else {
return Err(SuiError::UserInputError {
error: UserInputError::ObjectNotFound {
object_id: object_ids[i],
version: None,
},
});
}
}
Ok(result)
}
#[instrument(level = "debug", skip_all)]
pub(crate) fn acquire_transaction_locks(
&self,
cache: &WritebackCache,
epoch_store: &AuthorityPerEpochStore,
owned_input_objects: &[ObjectRef],
tx_digest: TransactionDigest,
signed_transaction: Option<VerifiedSignedTransaction>,
) -> SuiResult {
let object_ids = owned_input_objects.iter().map(|o| o.0).collect::<Vec<_>>();
let live_objects = Self::multi_get_objects_must_exist(cache, &object_ids)?;
// Only live objects can be locked
for (obj_ref, live_object) in owned_input_objects.iter().zip(live_objects.iter()) {
Self::verify_live_object(obj_ref, live_object)?;
}
let mut locks_to_write: Vec<(_, LockDetails)> =
Vec::with_capacity(owned_input_objects.len());
// Sort the objects before locking. This is not required by the protocol (since it's okay to
// reject any equivocating tx). However, this does prevent a confusing error on the client.
// Consider the case:
// TX1: [o1, o2];
// TX2: [o2, o1];
// If two threads race to acquire these locks, they might both acquire the first object, then
// error when trying to acquire the second. The error returned to the client would say that there
// is a conflicting tx on that object, but in fact neither object was locked and the tx was never
// signed. If one client then retries, they will succeed (counterintuitively).
let owned_input_objects = {
let mut o = owned_input_objects.to_vec();
o.sort_by_key(|o| o.0);
o
};
// Note that this function does not have to operate atomically. If there are two racing threads,
// then they are either trying to lock the same transaction (in which case both will succeed),
// or they are trying to lock the same object in two different transactions, in which case
// the sender has equivocated, and we are under no obligation to help them form a cert.
for obj_ref in owned_input_objects.iter() {
match self.try_set_transaction_lock(obj_ref, tx_digest, epoch_store) {
Ok(()) => locks_to_write.push((*obj_ref, tx_digest)),
Err(e) => {
// revert all pending writes and return error
// Note that reverting is not required for liveness, since a well formed and un-equivocating
// txn cannot fail to acquire locks.
// However, reverting is easy enough to do in this implementation that we do it anyway.
self.clear_cached_locks(&locks_to_write);
return Err(e);
}
}
}
// commit all writes to DB
epoch_store
.tables()?
.write_transaction_locks(signed_transaction, locks_to_write.iter().cloned())?;
// remove pending locks from unbounded storage
self.clear_cached_locks(&locks_to_write);
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::execution_cache::{
writeback_cache::writeback_cache_tests::Scenario, ExecutionCacheWrite,
};
#[tokio::test]
async fn test_transaction_locks_are_exclusive() {
telemetry_subscribers::init_for_testing();
Scenario::iterate(|mut s| async move {
s.with_created(&[1, 2, 3]);
s.do_tx().await;
s.with_mutated(&[1, 2, 3]);
s.do_tx().await;
let new1 = s.obj_ref(1);
let new2 = s.obj_ref(2);
let new3 = s.obj_ref(3);
s.with_mutated(&[1, 2, 3]); // begin forming a tx but never execute it
let outputs = s.take_outputs();
let tx1 = s.make_signed_transaction(&outputs.transaction);
s.cache
.acquire_transaction_locks(&s.epoch_store, &[new1, new2], *tx1.digest(), Some(tx1))
.expect("locks should be available");
// this tx doesn't use the actual objects in question, but we just need something
// to insert into the table.
s.with_created(&[4, 5]);
let tx2 = s.take_outputs().transaction.clone();
let tx2 = s.make_signed_transaction(&tx2);
// both locks are held by tx1, so this should fail
s.cache
.acquire_transaction_locks(
&s.epoch_store,
&[new1, new2],
*tx2.digest(),
Some(tx2.clone()),
)
.unwrap_err();
// new3 is lockable, but new2 is not, so this should fail
s.cache
.acquire_transaction_locks(
&s.epoch_store,
&[new3, new2],
*tx2.digest(),
Some(tx2.clone()),
)
.unwrap_err();
// new3 is unlocked
s.cache
.acquire_transaction_locks(
&s.epoch_store,
&[new3],
*tx2.digest(),
Some(tx2.clone()),
)
.expect("new3 should be unlocked");
})
.await;
}
#[tokio::test]
async fn test_transaction_locks_are_durable() {
telemetry_subscribers::init_for_testing();
Scenario::iterate(|mut s| async move {
s.with_created(&[1, 2]);
s.do_tx().await;
let old2 = s.obj_ref(2);
s.with_mutated(&[1, 2]);
s.do_tx().await;
let new1 = s.obj_ref(1);
let new2 = s.obj_ref(2);
s.with_mutated(&[1, 2]); // begin forming a tx but never execute it
let outputs = s.take_outputs();
let tx = s.make_signed_transaction(&outputs.transaction);
// fails because we are referring to an old object
s.cache
.acquire_transaction_locks(
&s.epoch_store,
&[new1, old2],
*tx.digest(),
Some(tx.clone()),
)
.unwrap_err();
// succeeds because the above call releases the lock on new1 after failing
// to get the lock on old2
s.cache
.acquire_transaction_locks(
&s.epoch_store,
&[new1, new2],
*tx.digest(),
Some(tx.clone()),
)
.expect("new1 should be unlocked after revert");
})
.await;
}
#[tokio::test]
async fn test_acquire_transaction_locks_revert() {
telemetry_subscribers::init_for_testing();
Scenario::iterate(|mut s| async move {
s.with_created(&[1, 2]);
s.do_tx().await;
let old2 = s.obj_ref(2);
s.with_mutated(&[1, 2]);
s.do_tx().await;
let new1 = s.obj_ref(1);
let new2 = s.obj_ref(2);
s.with_mutated(&[1, 2]); // begin forming a tx but never execute it
let outputs = s.take_outputs();
let tx = s.make_signed_transaction(&outputs.transaction);
// fails because we are referring to an old object
s.cache
.acquire_transaction_locks(
&s.epoch_store,
&[new1, old2],
*tx.digest(),
Some(tx.clone()),
)
.unwrap_err();
// this tx doesn't use the actual objects in question, but we just need something
// to insert into the table.
s.with_created(&[4, 5]);
let tx2 = s.take_outputs().transaction.clone();
let tx2 = s.make_signed_transaction(&tx2);
// succeeds because the above call releases the lock on new1 after failing
// to get the lock on old2
s.cache
.acquire_transaction_locks(&s.epoch_store, &[new1, new2], *tx2.digest(), Some(tx2))
.expect("new1 should be unlocked after revert");
})
.await;
}
#[tokio::test]
async fn test_acquire_transaction_locks_is_sync() {
telemetry_subscribers::init_for_testing();
Scenario::iterate(|mut s| async move {
s.with_created(&[1, 2]);
s.do_tx().await;
let objects: Vec<_> = vec![s.object(1), s.object(2)]
.into_iter()
.map(|o| o.compute_object_reference())
.collect();
s.with_mutated(&[1, 2]);
let outputs = s.take_outputs();
let tx2 = s.make_signed_transaction(&outputs.transaction);
// assert that acquire_transaction_locks is sync in non-simtest, which causes the
// fail_point_async! macros above to be elided
s.cache
.acquire_transaction_locks(
&s.epoch_store,
&objects,
*tx2.digest(),
Some(tx2.clone()),
)
.unwrap();
})
.await;
}
}