sui_core/consensus_throughput_calculator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0
use arc_swap::ArcSwap;
use parking_lot::Mutex;
use std::collections::{BTreeMap, VecDeque};
use std::num::NonZeroU64;
use std::sync::Arc;
use sui_protocol_config::Chain;
use sui_types::digests::ChainIdentifier;
use sui_types::messages_consensus::TimestampMs;
use tracing::{debug, warn};
use crate::authority::AuthorityMetrics;
const DEFAULT_OBSERVATIONS_WINDOW: u64 = 120; // number of observations to use to calculate the past throughput
const DEFAULT_THROUGHPUT_PROFILE_UPDATE_INTERVAL_SECS: u64 = 60; // seconds that need to pass between two consecutive throughput profile updates
const DEFAULT_THROUGHPUT_PROFILE_COOL_DOWN_THRESHOLD: u64 = 10; // 10% of throughput
#[derive(Clone, Copy, Debug, PartialEq, Eq, Ord, PartialOrd)]
pub struct ThroughputProfile {
pub level: Level,
/// The lower range of the throughput that this profile is referring to. For example, if
/// `throughput = 1_000`, then for values >= 1_000 this throughput profile applies.
pub throughput: u64,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Ord, PartialOrd)]
pub enum Level {
Low,
Medium,
High,
}
impl From<usize> for Level {
fn from(value: usize) -> Self {
if value == 0 {
Level::Low
} else if value == 1 {
Level::Medium
} else {
Level::High
}
}
}
impl From<Level> for usize {
fn from(value: Level) -> Self {
match value {
Level::Low => 0,
Level::Medium => 1,
Level::High => 2,
}
}
}
#[derive(Debug)]
pub struct ThroughputProfileRanges {
/// Holds the throughput profiles by the throughput range (upper_throughput, cool_down_threshold)
profiles: BTreeMap<u64, ThroughputProfile>,
}
impl ThroughputProfileRanges {
pub fn from_chain(chain_id: ChainIdentifier) -> ThroughputProfileRanges {
let to_profiles = |medium: u64, high: u64| -> Vec<ThroughputProfile> {
vec![
ThroughputProfile {
level: Level::Low,
throughput: 0,
},
ThroughputProfile {
level: Level::Medium,
throughput: medium,
},
ThroughputProfile {
level: Level::High,
throughput: high,
},
]
};
match chain_id.chain() {
Chain::Mainnet => ThroughputProfileRanges::new(&to_profiles(500, 2_000)),
Chain::Testnet => ThroughputProfileRanges::new(&to_profiles(500, 2_000)),
Chain::Unknown => ThroughputProfileRanges::new(&to_profiles(1_000, 2_000)),
}
}
pub fn new(profiles: &[ThroughputProfile]) -> Self {
let mut p: BTreeMap<u64, ThroughputProfile> = BTreeMap::new();
for profile in profiles {
assert!(
!p.iter().any(|(_, pr)| pr.level == profile.level),
"Attempted to insert profile with same level"
);
assert!(
p.insert(profile.throughput, *profile).is_none(),
"Attempted to insert profile with same throughput"
);
}
// By default the Low profile should exist with throughput 0
assert_eq!(
*p.get(&0).unwrap(),
ThroughputProfile {
level: Level::Low,
throughput: 0
}
);
Self { profiles: p }
}
pub fn lowest_profile(&self) -> ThroughputProfile {
*self
.profiles
.first_key_value()
.expect("Should contain at least one throughput profile")
.1
}
pub fn highest_profile(&self) -> ThroughputProfile {
*self
.profiles
.last_key_value()
.expect("Should contain at least one throughput profile")
.1
}
/// Resolves the throughput profile that corresponds to the provided throughput.
pub fn resolve(&self, current_throughput: u64) -> ThroughputProfile {
let mut iter = self.profiles.iter();
while let Some((threshold, profile)) = iter.next_back() {
if current_throughput >= *threshold {
return *profile;
}
}
warn!("Could not resolve throughput profile for throughput {} - we shouldn't end up here. Fallback to lowest profile as default.", current_throughput);
// If not found, then we should return the lowest possible profile as default to stay on safe side.
self.highest_profile()
}
}
impl Default for ThroughputProfileRanges {
fn default() -> Self {
let profiles = vec![
ThroughputProfile {
level: Level::Low,
throughput: 0,
},
ThroughputProfile {
level: Level::High,
throughput: 2_000,
},
];
ThroughputProfileRanges::new(&profiles)
}
}
pub type TimestampSecs = u64;
#[derive(Debug, Copy, Clone)]
pub struct ThroughputProfileEntry {
/// The throughput profile
profile: ThroughputProfile,
/// The time when this throughput profile was created
timestamp: TimestampSecs,
/// The calculated throughput when this profile created
throughput: u64,
}
#[derive(Default)]
struct ConsensusThroughputCalculatorInner {
observations: VecDeque<(TimestampSecs, u64)>,
total_transactions: u64,
/// The last timestamp that we considered as oldest to calculate the throughput over the observations window.
last_oldest_timestamp: Option<TimestampSecs>,
}
/// The ConsensusThroughputProfiler is responsible for assigning the right throughput profile by polling
/// the measured consensus throughput. It is important to rely on the ConsensusThroughputCalculator to measure
/// throughput as we need to make sure that validators will see an as possible consistent view to assign
/// the right profile.
pub struct ConsensusThroughputProfiler {
/// The throughput profile will be eligible for update every `throughput_profile_update_interval` seconds.
/// A bucketing approach is followed where the throughput timestamp is used in order to calculate on which
/// seconds bucket is assigned to. When we detect a change on that bucket then an update is triggered (if a different
/// profile is calculated). That allows validators to align on the update timing and ensure they will eventually
/// converge as the consensus timestamps are used.
throughput_profile_update_interval: TimestampSecs,
/// When current calculated throughput (A) is lower than previous, and the assessed profile is now a lower than previous,
/// we'll change to the lower profile only when (A) <= (previous_profile.throughput) * (100 - throughput_profile_cool_down_threshold) / 100.
/// Otherwise we'll stick to the previous profile. We want to do that to avoid any jittery behaviour that alternates between two profiles.
throughput_profile_cool_down_threshold: u64,
/// The profile ranges to use to profile the throughput
profile_ranges: ThroughputProfileRanges,
/// The most recently calculated throughput profile
last_throughput_profile: ArcSwap<ThroughputProfileEntry>,
metrics: Arc<AuthorityMetrics>,
/// The throughput calculator to use to derive the current throughput.
calculator: Arc<ConsensusThroughputCalculator>,
}
impl ConsensusThroughputProfiler {
pub fn new(
calculator: Arc<ConsensusThroughputCalculator>,
throughput_profile_update_interval: Option<TimestampSecs>,
throughput_profile_cool_down_threshold: Option<u64>,
metrics: Arc<AuthorityMetrics>,
profile_ranges: ThroughputProfileRanges,
) -> Self {
let throughput_profile_update_interval = throughput_profile_update_interval
.unwrap_or(DEFAULT_THROUGHPUT_PROFILE_UPDATE_INTERVAL_SECS);
let throughput_profile_cool_down_threshold = throughput_profile_cool_down_threshold
.unwrap_or(DEFAULT_THROUGHPUT_PROFILE_COOL_DOWN_THRESHOLD);
assert!(
throughput_profile_update_interval > 0,
"throughput_profile_update_interval should be >= 0"
);
assert!(
(0..=30).contains(&throughput_profile_cool_down_threshold),
"Out of bounds provided cool down threshold offset"
);
debug!("Profile ranges used: {:?}", profile_ranges);
Self {
throughput_profile_update_interval,
throughput_profile_cool_down_threshold,
last_throughput_profile: ArcSwap::from_pointee(ThroughputProfileEntry {
profile: profile_ranges.highest_profile(),
timestamp: 0,
throughput: 0,
}), // assume high throughput so the node is more conservative on bootstrap
profile_ranges,
metrics,
calculator,
}
}
// Return the current throughput level and the corresponding throughput when this was last updated.
// If that is not set yet then as default the High profile is returned and the throughput will be None.
pub fn throughput_level(&self) -> (Level, u64) {
// Update throughput profile if necessary time has passed
let (throughput, timestamp) = self.calculator.current_throughput();
let profile = self.update_and_fetch_throughput_profile(throughput, timestamp);
(profile.profile.level, profile.throughput)
}
// Calculate and update the throughput profile based on the provided throughput. The throughput profile
// will only get updated when a different value has been calculated. For example, if the
// `last_throughput_profile` is `Low` , and again we calculate it as `Low` based on input, then we'll
// not update the profile or the timestamp. We do care to perform updates only when profiles differ.
// To ensure that we are protected against throughput profile change fluctuations, we update a
// throughput profile every `throughput_profile_update_interval` seconds based on the provided unix timestamps.
// The last throughput profile entry is returned.
fn update_and_fetch_throughput_profile(
&self,
throughput: u64,
timestamp: TimestampSecs,
) -> ThroughputProfileEntry {
let last_profile = self.last_throughput_profile.load();
// Skip any processing if provided timestamp is older than the last used one. Also return existing
// profile when provided timestamp is 0 - this avoids triggering an immediate update eventually overriding
// the default value.
if timestamp == 0 || timestamp < last_profile.timestamp {
return **last_profile;
}
let profile = self.profile_ranges.resolve(throughput);
let current_seconds_bucket = timestamp / self.throughput_profile_update_interval;
let last_profile_seconds_bucket =
last_profile.timestamp / self.throughput_profile_update_interval;
// Update only when we minimum time has been passed since last update.
// We allow the edge case to update on the same bucket when a different profile has been
// computed for the exact same timestamp.
let should_update_profile = if current_seconds_bucket > last_profile_seconds_bucket
|| (profile != last_profile.profile && last_profile.timestamp == timestamp)
{
if profile < last_profile.profile {
// If new profile is smaller than previous one, then make sure the cool down threshold is respected.
let min_throughput = last_profile
.profile
.throughput
.saturating_mul(100 - self.throughput_profile_cool_down_threshold)
/ 100;
throughput <= min_throughput
} else {
true
}
} else {
false
};
if should_update_profile {
let p = ThroughputProfileEntry {
profile,
timestamp,
throughput,
};
debug!("Updating throughput profile to {:?}", p);
self.last_throughput_profile.store(Arc::new(p));
self.metrics
.consensus_calculated_throughput_profile
.set(usize::from(profile.level) as i64);
p
} else {
**last_profile
}
}
}
/// ConsensusThroughputCalculator is calculating the transaction throughput as this is coming out from
/// consensus. The throughput is calculated using a sliding window approach and leveraging the timestamps
/// provided by consensus.
pub struct ConsensusThroughputCalculator {
/// The number of transaction throughput observations that should be stored within the observations
/// vector in the ConsensusThroughputCalculatorInner. Those observations will be used to calculate
/// the current transactions throughput. We want to select a number that give us enough observations
/// so we better calculate the throughput and protected against spikes. A large enough value though
/// will make us less reactive to throughput changes.
observations_window: u64,
inner: Mutex<ConsensusThroughputCalculatorInner>,
current_throughput: ArcSwap<(u64, TimestampSecs)>,
metrics: Arc<AuthorityMetrics>,
}
impl ConsensusThroughputCalculator {
pub fn new(observations_window: Option<NonZeroU64>, metrics: Arc<AuthorityMetrics>) -> Self {
let observations_window = observations_window
.unwrap_or(NonZeroU64::new(DEFAULT_OBSERVATIONS_WINDOW).unwrap())
.get();
Self {
observations_window,
inner: Mutex::new(ConsensusThroughputCalculatorInner::default()),
current_throughput: ArcSwap::from_pointee((0, 0)),
metrics,
}
}
// Adds an observation of the number of transactions that have been sequenced after deduplication
// and the corresponding leader timestamp. The observation timestamps should be monotonically
// incremented otherwise observation will be ignored.
pub fn add_transactions(&self, timestamp_ms: TimestampMs, num_of_transactions: u64) {
let mut inner = self.inner.lock();
let timestamp_secs: TimestampSecs = timestamp_ms / 1_000; // lowest bucket we care is seconds
if let Some((front_ts, transactions)) = inner.observations.front_mut() {
// First check that the timestamp is monotonically incremented - ignore any observation that is not
// later from previous one (it shouldn't really happen).
if timestamp_secs < *front_ts {
warn!("Ignoring observation of transactions:{} as has earlier timestamp than last observation {}s < {}s", num_of_transactions, timestamp_secs, front_ts);
return;
}
// Not very likely, but if transactions refer to same second we add to the last element.
if timestamp_secs == *front_ts {
*transactions = transactions.saturating_add(num_of_transactions);
} else {
inner
.observations
.push_front((timestamp_secs, num_of_transactions));
}
} else {
inner
.observations
.push_front((timestamp_secs, num_of_transactions));
}
// update total number of transactions in the observations list
inner.total_transactions = inner.total_transactions.saturating_add(num_of_transactions);
// If we have more values on our window of max values, remove the last one, and calculate throughput.
// If we have the exact same values on our window of max values, then still calculate the throughput to ensure
// that we are taking into account the case where the last bucket gets updated because it falls into the same second.
if inner.observations.len() as u64 >= self.observations_window {
let last_element_ts = if inner.observations.len() as u64 == self.observations_window {
if let Some(ts) = inner.last_oldest_timestamp {
ts
} else {
warn!("Skip calculation - we still don't have enough elements to pop the last observation");
return;
}
} else {
let (ts, txes) = inner.observations.pop_back().unwrap();
inner.total_transactions = inner.total_transactions.saturating_sub(txes);
ts
};
// update the last oldest timestamp
inner.last_oldest_timestamp = Some(last_element_ts);
// get the first element's timestamp to calculate the transaction rate
let (first_element_ts, _first_element_transactions) = inner
.observations
.front()
.expect("There should be at least on element in the list");
let period = first_element_ts.saturating_sub(last_element_ts);
if period > 0 {
let current_throughput = inner.total_transactions / period;
self.metrics
.consensus_calculated_throughput
.set(current_throughput as i64);
self.current_throughput
.store(Arc::new((current_throughput, timestamp_secs)));
} else {
warn!("Skip calculating throughput as time period is {}. This is very unlikely to happen, should investigate.", period);
}
}
}
// Returns the current (live calculated) throughput and the corresponding timestamp of when this got updated.
pub fn current_throughput(&self) -> (u64, TimestampSecs) {
*self.current_throughput.load().as_ref()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::consensus_throughput_calculator::Level::{High, Low};
use prometheus::Registry;
#[test]
pub fn test_throughput_profile_ranges() {
let ranges = ThroughputProfileRanges::default();
assert_eq!(
ranges.resolve(0),
ThroughputProfile {
level: Low,
throughput: 0
}
);
assert_eq!(
ranges.resolve(1_000),
ThroughputProfile {
level: Low,
throughput: 0
}
);
assert_eq!(
ranges.resolve(2_000),
ThroughputProfile {
level: High,
throughput: 2_000
}
);
assert_eq!(
ranges.resolve(u64::MAX),
ThroughputProfile {
level: High,
throughput: 2_000
}
);
}
#[test]
#[cfg_attr(msim, ignore)]
pub fn test_consensus_throughput_calculator() {
let metrics = Arc::new(AuthorityMetrics::new(&Registry::new()));
let max_observation_points: NonZeroU64 = NonZeroU64::new(3).unwrap();
let calculator = ConsensusThroughputCalculator::new(Some(max_observation_points), metrics);
assert_eq!(calculator.current_throughput(), (0, 0));
calculator.add_transactions(1000 as TimestampMs, 1_000);
calculator.add_transactions(2000 as TimestampMs, 1_000);
calculator.add_transactions(3000 as TimestampMs, 1_000);
calculator.add_transactions(4000 as TimestampMs, 1_000);
// We expect to have a rate of 1K tx/sec with last update timestamp the 4th second
assert_eq!(calculator.current_throughput(), (1000, 4));
// We are adding more transactions to get over 2K tx/sec
calculator.add_transactions(5_000 as TimestampMs, 2_500);
calculator.add_transactions(6_000 as TimestampMs, 2_800);
assert_eq!(calculator.current_throughput(), (2100, 6));
// Let's now add 0 transactions after 5 seconds. Since 5 seconds have passed since the last
// update and now the transactions are 0 we expect the throughput to be calculate as:
// 2800 + 2500 + 0 = 5300 / (15sec - 4sec) = 5300 / 11sec = 481 tx/sec
calculator.add_transactions(15_000 as TimestampMs, 0);
assert_eq!(calculator.current_throughput(), (481, 15));
// Adding zero transactions for the next 5 seconds will make throughput zero
calculator.add_transactions(17_000 as TimestampMs, 0);
assert_eq!(calculator.current_throughput(), (233, 17));
calculator.add_transactions(19_000 as TimestampMs, 0);
calculator.add_transactions(20_000 as TimestampMs, 0);
assert_eq!(calculator.current_throughput(), (0, 20));
// By adding now a few entries with lots of transactions increase again the throughput
calculator.add_transactions(21_000 as TimestampMs, 1_000);
calculator.add_transactions(22_000 as TimestampMs, 2_000);
calculator.add_transactions(23_000 as TimestampMs, 3_100);
assert_eq!(calculator.current_throughput(), (2033, 23));
}
#[test]
#[cfg_attr(msim, ignore)]
pub fn test_throughput_calculator_same_timestamp_observations() {
let metrics = Arc::new(AuthorityMetrics::new(&Registry::new()));
let max_observation_points: NonZeroU64 = NonZeroU64::new(2).unwrap();
let calculator = ConsensusThroughputCalculator::new(Some(max_observation_points), metrics);
// adding one observation
calculator.add_transactions(1_000, 0);
// Adding observations with same timestamp should fall under the same bucket and won't lead
// to throughput update.
for _ in 0..10 {
calculator.add_transactions(2_340, 100);
}
assert_eq!(calculator.current_throughput(), (0, 0));
// Adding now one observation on a different second bucket will change throughput
calculator.add_transactions(5_000, 0);
assert_eq!(calculator.current_throughput(), (250, 5));
// Updating further the last bucket with more transactions it keeps updating the throughput
calculator.add_transactions(5_000, 400);
assert_eq!(calculator.current_throughput(), (350, 5));
calculator.add_transactions(5_000, 300);
assert_eq!(calculator.current_throughput(), (425, 5));
}
#[test]
#[cfg_attr(msim, ignore)]
pub fn test_consensus_throughput_profiler() {
let metrics = Arc::new(AuthorityMetrics::new(&Registry::new()));
let throughput_profile_update_interval: TimestampSecs = 5;
let max_observation_points: NonZeroU64 = NonZeroU64::new(3).unwrap();
let throughput_profile_cool_down_threshold: u64 = 10;
let ranges = ThroughputProfileRanges::default();
let calculator = Arc::new(ConsensusThroughputCalculator::new(
Some(max_observation_points),
metrics.clone(),
));
let profiler = ConsensusThroughputProfiler::new(
calculator.clone(),
Some(throughput_profile_update_interval),
Some(throughput_profile_cool_down_threshold),
metrics,
ranges,
);
// When no transactions exists, the calculator will return by default "High" to err on the
// assumption that there is lots of load.
assert_eq!(profiler.throughput_level(), (High, 0));
calculator.add_transactions(1000 as TimestampMs, 1_000);
calculator.add_transactions(2000 as TimestampMs, 1_000);
calculator.add_transactions(3000 as TimestampMs, 1_000);
// We expect to have a rate of 1K tx/sec, that's < 2K limit , so throughput profile remains to "High" - nothing gets updated
assert_eq!(profiler.throughput_level(), (High, 0));
// We are adding more transactions to get over 2K tx/sec, so throughput profile should now be categorised
// as "high"
calculator.add_transactions(4000 as TimestampMs, 2_500);
calculator.add_transactions(5000 as TimestampMs, 2_800);
assert_eq!(profiler.throughput_level(), (High, 2100));
// Let's now add 0 transactions after at least 5 seconds. Since the update should happen every 5 seconds
// now the transactions are 0 we expect the throughput to be calculate as:
// 2800 + 2800 + 0 = 5300 / 15 - 4sec = 5600 / 11sec = 509 tx/sec
calculator.add_transactions(7_000 as TimestampMs, 2_800);
calculator.add_transactions(15_000 as TimestampMs, 0);
assert_eq!(profiler.throughput_level(), (Low, 509));
// Adding zero transactions for the next 5 seconds will make throughput zero.
// Profile will remain Low and throughput will get updated
calculator.add_transactions(17_000 as TimestampMs, 0);
calculator.add_transactions(19_000 as TimestampMs, 0);
calculator.add_transactions(20_000 as TimestampMs, 0);
assert_eq!(profiler.throughput_level(), (Low, 0));
// By adding a few entries with lots of transactions for the exact same last timestamp it will
// trigger a throughput profile update.
calculator.add_transactions(20_000 as TimestampMs, 4_000);
calculator.add_transactions(20_000 as TimestampMs, 4_000);
calculator.add_transactions(20_000 as TimestampMs, 4_000);
assert_eq!(profiler.throughput_level(), (High, 2400));
// no further updates will happen until the next 5sec bucket update.
calculator.add_transactions(22_000 as TimestampMs, 0);
calculator.add_transactions(23_000 as TimestampMs, 0);
assert_eq!(profiler.throughput_level(), (High, 2400));
}
#[test]
#[cfg_attr(msim, ignore)]
pub fn test_consensus_throughput_profiler_update_interval() {
let metrics = Arc::new(AuthorityMetrics::new(&Registry::new()));
let throughput_profile_update_interval: TimestampSecs = 5;
let max_observation_points: NonZeroU64 = NonZeroU64::new(2).unwrap();
let ranges = ThroughputProfileRanges::default();
let calculator = Arc::new(ConsensusThroughputCalculator::new(
Some(max_observation_points),
metrics.clone(),
));
let profiler = ConsensusThroughputProfiler::new(
calculator.clone(),
Some(throughput_profile_update_interval),
None,
metrics,
ranges,
);
// Current setup is `throughput_profile_update_interval` = 5sec, which means that throughput profile
// should get updated every 5 seconds (based on the provided unix timestamp).
calculator.add_transactions(3_000 as TimestampMs, 2_200);
calculator.add_transactions(4_000 as TimestampMs, 4_200);
calculator.add_transactions(7_000 as TimestampMs, 4_200);
assert_eq!(profiler.throughput_level(), (High, 2_100));
// When adding transactions at timestamp 10s the bucket changes and the profile should get updated
calculator.add_transactions(10_000 as TimestampMs, 1_000);
assert_eq!(profiler.throughput_level(), (Low, 866));
// Now adding transactions at timestamp 16s the bucket changes and profile should get updated
calculator.add_transactions(16_000 as TimestampMs, 20_000);
assert_eq!(profiler.throughput_level(), (High, 2333));
// Keep adding transactions that fall under the same timestamp as the previous one, even though
// traffic should be marked as low it doesn't until the bucket of 20s is updated.
calculator.add_transactions(17_000 as TimestampMs, 0);
calculator.add_transactions(18_000 as TimestampMs, 0);
calculator.add_transactions(19_000 as TimestampMs, 0);
assert_eq!(profiler.throughput_level(), (High, 2333));
calculator.add_transactions(20_000 as TimestampMs, 0);
assert_eq!(profiler.throughput_level(), (Low, 0));
}
#[test]
#[cfg_attr(msim, ignore)]
pub fn test_consensus_throughput_profiler_cool_down() {
let metrics = Arc::new(AuthorityMetrics::new(&Registry::new()));
let throughput_profile_update_window: TimestampSecs = 3;
let max_observation_points: NonZeroU64 = NonZeroU64::new(3).unwrap();
let throughput_profile_cool_down_threshold: u64 = 10;
let ranges = ThroughputProfileRanges::default();
let calculator = Arc::new(ConsensusThroughputCalculator::new(
Some(max_observation_points),
metrics.clone(),
));
let profiler = ConsensusThroughputProfiler::new(
calculator.clone(),
Some(throughput_profile_update_window),
Some(throughput_profile_cool_down_threshold),
metrics,
ranges,
);
// Adding 4 observations of 3_000 tx/sec, so in the end throughput profile should be flagged as high
for i in 1..=4 {
calculator.add_transactions(i * 1_000, 3_000);
}
assert_eq!(profiler.throughput_level(), (High, 3_000));
// Now let's add some transactions to bring throughput little bit bellow the upper Low threshold (2000 tx/sec)
// but still above the 10% offset which is 1800 tx/sec.
calculator.add_transactions(5_000, 1_900);
calculator.add_transactions(6_000, 1_900);
calculator.add_transactions(7_000, 1_900);
assert_eq!(calculator.current_throughput(), (1_900, 7));
assert_eq!(profiler.throughput_level(), (High, 3_000));
// Let's bring down more throughput - now the throughput profile should get updated
calculator.add_transactions(8_000, 1_500);
calculator.add_transactions(9_000, 1_500);
calculator.add_transactions(10_000, 1_500);
assert_eq!(profiler.throughput_level(), (Low, 1500));
}
}