mysten_common/sync/
notify_read.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0

use futures::future::{join_all, Either};
use parking_lot::Mutex;
use parking_lot::MutexGuard;
use std::collections::hash_map::DefaultHasher;
use std::collections::HashMap;
use std::future::Future;
use std::hash::{Hash, Hasher};
use std::mem;
use std::pin::Pin;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::task::{Context, Poll};
use tokio::sync::oneshot;

type Registrations<V> = Vec<oneshot::Sender<V>>;

pub struct NotifyRead<K, V> {
    pending: Vec<Mutex<HashMap<K, Registrations<V>>>>,
    count_pending: AtomicUsize,
}

impl<K: Eq + Hash + Clone, V: Clone> NotifyRead<K, V> {
    pub fn new() -> Self {
        let pending = (0..255).map(|_| Default::default()).collect();
        let count_pending = Default::default();
        Self {
            pending,
            count_pending,
        }
    }

    /// Asynchronously notifies waiters and return number of remaining pending registration
    pub fn notify(&self, key: &K, value: &V) -> usize {
        let registrations = self.pending(key).remove(key);
        let Some(registrations) = registrations else {
            return self.count_pending.load(Ordering::Relaxed);
        };
        let rem = self
            .count_pending
            .fetch_sub(registrations.len(), Ordering::Relaxed);
        for registration in registrations {
            registration.send(value.clone()).ok();
        }
        rem
    }

    pub fn register_one(&self, key: &K) -> Registration<K, V> {
        self.count_pending.fetch_add(1, Ordering::Relaxed);
        let (sender, receiver) = oneshot::channel();
        self.register(key, sender);
        Registration {
            this: self,
            registration: Some((key.clone(), receiver)),
        }
    }

    pub fn register_all(&self, keys: &[K]) -> Vec<Registration<K, V>> {
        self.count_pending.fetch_add(keys.len(), Ordering::Relaxed);
        let mut registrations = vec![];
        for key in keys.iter() {
            let (sender, receiver) = oneshot::channel();
            self.register(key, sender);
            let registration = Registration {
                this: self,
                registration: Some((key.clone(), receiver)),
            };
            registrations.push(registration);
        }
        registrations
    }

    fn register(&self, key: &K, sender: oneshot::Sender<V>) {
        self.pending(key)
            .entry(key.clone())
            .or_default()
            .push(sender);
    }

    fn pending(&self, key: &K) -> MutexGuard<HashMap<K, Registrations<V>>> {
        let mut state = DefaultHasher::new();
        key.hash(&mut state);
        let hash = state.finish();
        let pending = self
            .pending
            .get((hash % self.pending.len() as u64) as usize)
            .unwrap();
        pending.lock()
    }

    pub fn num_pending(&self) -> usize {
        self.count_pending.load(Ordering::Relaxed)
    }

    fn cleanup(&self, key: &K) {
        let mut pending = self.pending(key);
        // it is possible that registration was fulfilled before we get here
        let Some(registrations) = pending.get_mut(key) else {
            return;
        };
        let mut count_deleted = 0usize;
        registrations.retain(|s| {
            let delete = s.is_closed();
            if delete {
                count_deleted += 1;
            }
            !delete
        });
        self.count_pending
            .fetch_sub(count_deleted, Ordering::Relaxed);
        if registrations.is_empty() {
            pending.remove(key);
        }
    }
}

impl<K: Eq + Hash + Clone + Unpin, V: Clone + Unpin> NotifyRead<K, V> {
    pub async fn read(&self, keys: &[K], fetch: impl FnOnce(&[K]) -> Vec<Option<V>>) -> Vec<V> {
        let registrations = self.register_all(keys);

        let results = fetch(keys);

        let results = results
            .into_iter()
            .zip(registrations)
            .map(|(a, r)| match a {
                // Note that Some() clause also drops registration that is already fulfilled
                Some(ready) => Either::Left(futures::future::ready(ready)),
                None => Either::Right(r),
            });

        join_all(results).await
    }
}

/// Registration resolves to the value but also provides safe cancellation
/// When Registration is dropped before it is resolved, we de-register from the pending list
pub struct Registration<'a, K: Eq + Hash + Clone, V: Clone> {
    this: &'a NotifyRead<K, V>,
    registration: Option<(K, oneshot::Receiver<V>)>,
}

impl<K: Eq + Hash + Clone + Unpin, V: Clone + Unpin> Future for Registration<'_, K, V> {
    type Output = V;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let receiver = self
            .registration
            .as_mut()
            .map(|(_key, receiver)| receiver)
            .expect("poll can not be called after drop");
        let poll = Pin::new(receiver).poll(cx);
        if poll.is_ready() {
            // When polling complete we no longer need to cancel
            self.registration.take();
        }
        poll.map(|r| r.expect("Sender never drops when registration is pending"))
    }
}

impl<K: Eq + Hash + Clone, V: Clone> Drop for Registration<'_, K, V> {
    fn drop(&mut self) {
        if let Some((key, receiver)) = self.registration.take() {
            mem::drop(receiver);
            // Receiver is dropped before cleanup
            self.this.cleanup(&key)
        }
    }
}
impl<K: Eq + Hash + Clone, V: Clone> Default for NotifyRead<K, V> {
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures::future::join_all;

    #[tokio::test]
    pub async fn test_notify_read() {
        let notify_read = NotifyRead::<u64, u64>::new();
        let mut registrations = notify_read.register_all(&[1, 2, 3]);
        assert_eq!(3, notify_read.count_pending.load(Ordering::Relaxed));
        registrations.pop();
        assert_eq!(2, notify_read.count_pending.load(Ordering::Relaxed));
        notify_read.notify(&2, &2);
        notify_read.notify(&1, &1);
        let reads = join_all(registrations).await;
        assert_eq!(0, notify_read.count_pending.load(Ordering::Relaxed));
        assert_eq!(reads, vec![1, 2]);
        // ensure cleanup is done correctly
        for pending in &notify_read.pending {
            assert!(pending.lock().is_empty());
        }
    }
}