consensus_core/linearizer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0
use std::{collections::HashSet, sync::Arc};
use consensus_config::{AuthorityIndex, Stake};
use itertools::Itertools;
use parking_lot::RwLock;
use crate::{
block::{BlockAPI, BlockRef, BlockTimestampMs, VerifiedBlock},
commit::{sort_sub_dag_blocks, Commit, CommittedSubDag, TrustedCommit},
context::Context,
dag_state::DagState,
leader_schedule::LeaderSchedule,
Round, TransactionIndex,
};
/// The `StorageAPI` trait provides an interface for the block store and has been
/// mostly introduced for allowing to inject the test store in `DagBuilder`.
pub(crate) trait BlockStoreAPI {
fn get_blocks(&self, refs: &[BlockRef]) -> Vec<Option<VerifiedBlock>>;
fn gc_round(&self) -> Round;
fn gc_enabled(&self) -> bool;
fn set_committed(&mut self, block_ref: &BlockRef) -> bool;
fn is_committed(&self, block_ref: &BlockRef) -> bool;
}
impl BlockStoreAPI
for parking_lot::lock_api::RwLockWriteGuard<'_, parking_lot::RawRwLock, DagState>
{
fn get_blocks(&self, refs: &[BlockRef]) -> Vec<Option<VerifiedBlock>> {
DagState::get_blocks(self, refs)
}
fn gc_round(&self) -> Round {
DagState::gc_round(self)
}
fn gc_enabled(&self) -> bool {
DagState::gc_enabled(self)
}
fn set_committed(&mut self, block_ref: &BlockRef) -> bool {
DagState::set_committed(self, block_ref)
}
fn is_committed(&self, block_ref: &BlockRef) -> bool {
DagState::is_committed(self, block_ref)
}
}
/// Expand a committed sequence of leader into a sequence of sub-dags.
#[derive(Clone)]
pub(crate) struct Linearizer {
/// In memory block store representing the dag state
context: Arc<Context>,
dag_state: Arc<RwLock<DagState>>,
leader_schedule: Arc<LeaderSchedule>,
}
impl Linearizer {
pub(crate) fn new(
context: Arc<Context>,
dag_state: Arc<RwLock<DagState>>,
leader_schedule: Arc<LeaderSchedule>,
) -> Self {
Self {
dag_state,
leader_schedule,
context,
}
}
/// Collect the sub-dag and the corresponding commit from a specific leader excluding any duplicates or
/// blocks that have already been committed (within previous sub-dags).
fn collect_sub_dag_and_commit(
&mut self,
leader_block: VerifiedBlock,
reputation_scores_desc: Vec<(AuthorityIndex, u64)>,
) -> (CommittedSubDag, TrustedCommit) {
let _s = self
.context
.metrics
.node_metrics
.scope_processing_time
.with_label_values(&["Linearizer::collect_sub_dag_and_commit"])
.start_timer();
// Grab latest commit state from dag state
let mut dag_state = self.dag_state.write();
let last_commit_index = dag_state.last_commit_index();
let last_commit_digest = dag_state.last_commit_digest();
let last_commit_timestamp_ms = dag_state.last_commit_timestamp_ms();
let last_committed_rounds = dag_state.last_committed_rounds();
// Now linearize the sub-dag starting from the leader block
let (to_commit, rejected_transactions) = Self::linearize_sub_dag(
&self.context,
leader_block.clone(),
last_committed_rounds,
&mut dag_state,
);
let timestamp_ms = Self::calculate_commit_timestamp(
&self.context,
&mut dag_state,
&leader_block,
last_commit_timestamp_ms,
);
drop(dag_state);
// Create the Commit.
let commit = Commit::new(
last_commit_index + 1,
last_commit_digest,
timestamp_ms,
leader_block.reference(),
to_commit
.iter()
.map(|block| block.reference())
.collect::<Vec<_>>(),
);
let serialized = commit
.serialize()
.unwrap_or_else(|e| panic!("Failed to serialize commit: {}", e));
let commit = TrustedCommit::new_trusted(commit, serialized);
// Create the corresponding committed sub dag
let sub_dag = CommittedSubDag::new(
leader_block.reference(),
to_commit,
rejected_transactions,
timestamp_ms,
commit.reference(),
reputation_scores_desc,
);
(sub_dag, commit)
}
/// Calculates the commit's timestamp. If the median based timestamp calculation is enabled,
/// then the timestamp will be calculated as the median of leader's parents (leader.round - 1)
/// timestamps by stake. Otherwise, the leader's timestamp will be used. To ensure that commit
/// timestamp monotonicity is respected it is compared against the `last_commit_timestamp_ms`
/// and the maximum of the two is returned.
pub(crate) fn calculate_commit_timestamp(
context: &Context,
dag_state: &mut impl BlockStoreAPI,
leader_block: &VerifiedBlock,
last_commit_timestamp_ms: BlockTimestampMs,
) -> BlockTimestampMs {
let timestamp_ms = if context
.protocol_config
.consensus_median_based_commit_timestamp()
{
// Select leaders' parent blocks.
let block_refs = leader_block
.ancestors()
.iter()
.filter(|block_ref| block_ref.round == leader_block.round() - 1)
.cloned()
.collect::<Vec<_>>();
// Get the blocks from dag state which should not fail.
let blocks = dag_state
.get_blocks(&block_refs)
.into_iter()
.map(|block_opt| block_opt.expect("We should have all blocks in dag state."));
median_timestamp_by_stake(context, blocks).unwrap_or_else(|e| {
panic!(
"Cannot compute median timestamp for leader block {:?} ancestors: {}",
leader_block, e
)
})
} else {
leader_block.timestamp_ms()
};
// Always make sure that commit timestamps are monotonic, so override if necessary.
timestamp_ms.max(last_commit_timestamp_ms)
}
pub(crate) fn linearize_sub_dag(
context: &Context,
leader_block: VerifiedBlock,
last_committed_rounds: Vec<u32>,
dag_state: &mut impl BlockStoreAPI,
) -> (Vec<VerifiedBlock>, Vec<Vec<TransactionIndex>>) {
let gc_enabled = dag_state.gc_enabled();
// The GC round here is calculated based on the last committed round of the leader block. The algorithm will attempt to
// commit blocks up to this GC round. Once this commit has been processed and written to DagState, then gc round will update
// and on the processing of the next commit we'll have it already updated, so no need to do any gc_round recalculations here.
// We just use whatever is currently in DagState.
let gc_round: Round = dag_state.gc_round();
let leader_block_ref = leader_block.reference();
let mut buffer = vec![leader_block];
let mut to_commit = Vec::new();
// The new logic will perform the recursion without stopping at the highest round round that has been committed per authority. Instead it will
// allow to commit blocks that are lower than the highest committed round for an authority but higher than gc_round.
if context.protocol_config.consensus_linearize_subdag_v2() {
assert!(
dag_state.set_committed(&leader_block_ref),
"Leader block with reference {:?} attempted to be committed twice",
leader_block_ref
);
while let Some(x) = buffer.pop() {
to_commit.push(x.clone());
let ancestors: Vec<VerifiedBlock> = dag_state
.get_blocks(
&x.ancestors()
.iter()
.copied()
.filter(|ancestor| {
ancestor.round > gc_round && !dag_state.is_committed(ancestor)
})
.collect::<Vec<_>>(),
)
.into_iter()
.map(|ancestor_opt| {
ancestor_opt.expect("We should have all uncommitted blocks in dag state.")
})
.collect();
for ancestor in ancestors {
buffer.push(ancestor.clone());
assert!(
dag_state.set_committed(&ancestor.reference()),
"Block with reference {:?} attempted to be committed twice",
ancestor.reference()
);
}
}
} else {
let mut committed = HashSet::new();
assert!(committed.insert(leader_block_ref));
while let Some(x) = buffer.pop() {
to_commit.push(x.clone());
let ancestors: Vec<VerifiedBlock> = dag_state
.get_blocks(
&x.ancestors()
.iter()
.copied()
.filter(|ancestor| {
// We skip the block if we already committed it or we reached a
// round that we already committed.
// TODO: for Fast Path we need to ammend the recursion rule here and allow us to commit blocks all the way up to the `gc_round`.
// Some additional work will be needed to make sure that we keep the uncommitted blocks up to the `gc_round` across commits.
!committed.contains(ancestor)
&& last_committed_rounds[ancestor.author] < ancestor.round
})
.filter(|ancestor| {
// Keep the block if GC is not enabled or it is enabled and the block is above the gc_round. We do this
// to stop the recursion early and avoid going to deep when it's unnecessary.
!gc_enabled || ancestor.round > gc_round
})
.collect::<Vec<_>>(),
)
.into_iter()
.map(|ancestor_opt| {
ancestor_opt.expect("We should have all uncommitted blocks in dag state.")
})
.collect();
for ancestor in ancestors {
buffer.push(ancestor.clone());
assert!(committed.insert(ancestor.reference()));
}
}
}
// The above code should have not yielded any blocks that are <= gc_round, but just to make sure that we'll never
// commit anything that should be garbage collected we attempt to prune here as well.
if gc_enabled {
assert!(to_commit.iter().all(|block| block.round() > gc_round), "No blocks <= {gc_round} should be committed. Leader round {}, blocks {to_commit:?}.", leader_block_ref);
}
// Sort the blocks of the sub-dag blocks
sort_sub_dag_blocks(&mut to_commit);
// TODO(fastpath): determine rejected transactions from voting.
// Get rejected transactions.
let rejected_transactions = vec![vec![]; to_commit.len()];
(to_commit, rejected_transactions)
}
// This function should be called whenever a new commit is observed. This will
// iterate over the sequence of committed leaders and produce a list of committed
// sub-dags.
pub(crate) fn handle_commit(
&mut self,
committed_leaders: Vec<VerifiedBlock>,
) -> Vec<CommittedSubDag> {
if committed_leaders.is_empty() {
return vec![];
}
// We check whether the leader schedule has been updated. If yes, then we'll send the scores as
// part of the first sub dag.
let schedule_updated = self
.leader_schedule
.leader_schedule_updated(&self.dag_state);
let mut committed_sub_dags = vec![];
for (i, leader_block) in committed_leaders.into_iter().enumerate() {
let reputation_scores_desc = if schedule_updated && i == 0 {
self.leader_schedule
.leader_swap_table
.read()
.reputation_scores_desc
.clone()
} else {
vec![]
};
// Collect the sub-dag generated using each of these leaders and the corresponding commit.
let (sub_dag, commit) =
self.collect_sub_dag_and_commit(leader_block, reputation_scores_desc);
self.update_blocks_pruned_metric(&sub_dag);
// Buffer commit in dag state for persistence later.
// This also updates the last committed rounds.
self.dag_state.write().add_commit(commit.clone());
committed_sub_dags.push(sub_dag);
}
// Committed blocks must be persisted to storage before sending them to Sui and executing
// their transactions.
// Commit metadata can be persisted more lazily because they are recoverable. Uncommitted
// blocks can wait to persist too.
// But for simplicity, all unpersisted blocks and commits are flushed to storage.
self.dag_state.write().flush();
committed_sub_dags
}
// Try to measure the number of blocks that get pruned due to GC. This is not very accurate, but it can give us a good enough idea.
// We consider a block as pruned when it is an ancestor of a block that has been committed as part of the provided `sub_dag`, but
// it has not been committed as part of previous commits. Right now we measure this via checking that highest committed round for the authority
// as we don't an efficient look up functionality to check if a block has been committed or not.
fn update_blocks_pruned_metric(&self, sub_dag: &CommittedSubDag) {
let (last_committed_rounds, gc_round) = {
let dag_state = self.dag_state.read();
(dag_state.last_committed_rounds(), dag_state.gc_round())
};
for block_ref in sub_dag
.blocks
.iter()
.flat_map(|block| block.ancestors())
.filter(
|ancestor_ref| {
ancestor_ref.round <= gc_round
&& last_committed_rounds[ancestor_ref.author] != ancestor_ref.round
}, // If the last committed round is the same as the pruned block's round, then we know for sure that it has been committed and it doesn't count here
// as pruned block.
)
.unique()
{
let hostname = &self.context.committee.authority(block_ref.author).hostname;
// If the last committed round from this authority is lower than the pruned ancestor in question, then we know for sure that it has not been committed.
let label_values = if last_committed_rounds[block_ref.author] < block_ref.round {
&[hostname, "uncommitted"]
} else {
// If last committed round is higher for this authority, then we don't really know it's status, but we know that there is a higher committed block from this authority.
&[hostname, "higher_committed"]
};
self.context
.metrics
.node_metrics
.blocks_pruned_on_commit
.with_label_values(label_values)
.inc();
}
}
}
/// Computes the median timestamp of the blocks weighted by the stake of their authorities.
/// This function assumes each block comes from a different authority of the same round.
/// Error is returned if no blocks are provided or total stake is less than quorum threshold.
pub(crate) fn median_timestamp_by_stake(
context: &Context,
blocks: impl Iterator<Item = VerifiedBlock>,
) -> Result<BlockTimestampMs, String> {
let mut total_stake = 0;
let mut timestamps = vec![];
for block in blocks {
let stake = context.committee.authority(block.author()).stake;
timestamps.push((block.timestamp_ms(), stake));
total_stake += stake;
}
if timestamps.is_empty() {
return Err("No blocks provided".to_string());
}
if total_stake < context.committee.quorum_threshold() {
return Err(format!(
"Total stake {} < quorum threshold {}",
total_stake,
context.committee.quorum_threshold()
)
.to_string());
}
Ok(median_timestamps_by_stake_inner(timestamps, total_stake))
}
fn median_timestamps_by_stake_inner(
mut timestamps: Vec<(BlockTimestampMs, Stake)>,
total_stake: Stake,
) -> BlockTimestampMs {
timestamps.sort_by_key(|(ts, _)| *ts);
let mut cumulative_stake = 0;
for (ts, stake) in ×tamps {
cumulative_stake += stake;
if cumulative_stake > total_stake / 2 {
return *ts;
}
}
timestamps.last().unwrap().0
}
#[cfg(test)]
mod tests {
use rstest::rstest;
use super::*;
use crate::{
commit::{CommitAPI as _, CommitDigest, DEFAULT_WAVE_LENGTH},
context::Context,
leader_schedule::{LeaderSchedule, LeaderSwapTable},
storage::mem_store::MemStore,
test_dag_builder::DagBuilder,
test_dag_parser::parse_dag,
CommitIndex, TestBlock,
};
#[rstest]
#[tokio::test]
async fn test_handle_commit(#[values(true, false)] consensus_median_timestamp: bool) {
telemetry_subscribers::init_for_testing();
let num_authorities = 4;
let (mut context, _keys) = Context::new_for_test(num_authorities);
context
.protocol_config
.set_consensus_median_based_commit_timestamp_for_testing(consensus_median_timestamp);
let context = Arc::new(context);
let dag_state = Arc::new(RwLock::new(DagState::new(
context.clone(),
Arc::new(MemStore::new()),
)));
let leader_schedule = Arc::new(LeaderSchedule::new(
context.clone(),
LeaderSwapTable::default(),
));
let mut linearizer = Linearizer::new(context.clone(), dag_state.clone(), leader_schedule);
// Populate fully connected test blocks for round 0 ~ 10, authorities 0 ~ 3.
let num_rounds: u32 = 10;
let mut dag_builder = DagBuilder::new(context.clone());
dag_builder
.layers(1..=num_rounds)
.build()
.persist_layers(dag_state.clone());
let leaders = dag_builder
.leader_blocks(1..=num_rounds)
.into_iter()
.map(Option::unwrap)
.collect::<Vec<_>>();
let commits = linearizer.handle_commit(leaders.clone());
for (idx, subdag) in commits.into_iter().enumerate() {
tracing::info!("{subdag:?}");
assert_eq!(subdag.leader, leaders[idx].reference());
let expected_ts = if consensus_median_timestamp {
let block_refs = leaders[idx]
.ancestors()
.iter()
.filter(|block_ref| block_ref.round == leaders[idx].round() - 1)
.cloned()
.collect::<Vec<_>>();
let blocks = dag_state
.read()
.get_blocks(&block_refs)
.into_iter()
.map(|block_opt| block_opt.expect("We should have all blocks in dag state."));
median_timestamp_by_stake(&context, blocks).unwrap()
} else {
leaders[idx].timestamp_ms()
};
assert_eq!(subdag.timestamp_ms, expected_ts);
if idx == 0 {
// First subdag includes the leader block only
assert_eq!(subdag.blocks.len(), 1);
} else {
// Every subdag after will be missing the leader block from the previous
// committed subdag
assert_eq!(subdag.blocks.len(), num_authorities);
}
for block in subdag.blocks.iter() {
assert!(block.round() <= leaders[idx].round());
}
assert_eq!(subdag.commit_ref.index, idx as CommitIndex + 1);
}
}
#[tokio::test]
async fn test_handle_commit_with_schedule_update() {
telemetry_subscribers::init_for_testing();
let num_authorities = 4;
let context = Arc::new(Context::new_for_test(num_authorities).0);
let dag_state = Arc::new(RwLock::new(DagState::new(
context.clone(),
Arc::new(MemStore::new()),
)));
const NUM_OF_COMMITS_PER_SCHEDULE: u64 = 10;
let leader_schedule = Arc::new(
LeaderSchedule::new(context.clone(), LeaderSwapTable::default())
.with_num_commits_per_schedule(NUM_OF_COMMITS_PER_SCHEDULE),
);
let mut linearizer =
Linearizer::new(context.clone(), dag_state.clone(), leader_schedule.clone());
// Populate fully connected test blocks for round 0 ~ 20, authorities 0 ~ 3.
let num_rounds: u32 = 20;
let mut dag_builder = DagBuilder::new(context.clone());
dag_builder
.layers(1..=num_rounds)
.build()
.persist_layers(dag_state.clone());
// Take the first 10 leaders
let leaders = dag_builder
.leader_blocks(1..=10)
.into_iter()
.map(Option::unwrap)
.collect::<Vec<_>>();
// Create some commits
let commits = linearizer.handle_commit(leaders.clone());
// Write them in DagState
dag_state.write().add_scoring_subdags(commits);
// Now update the leader schedule
leader_schedule.update_leader_schedule_v2(&dag_state);
assert!(
leader_schedule.leader_schedule_updated(&dag_state),
"Leader schedule should have been updated"
);
// Try to commit now the rest of the 10 leaders
let leaders = dag_builder
.leader_blocks(11..=20)
.into_iter()
.map(Option::unwrap)
.collect::<Vec<_>>();
// Now on the commits only the first one should contain the updated scores, the other should be empty
let commits = linearizer.handle_commit(leaders.clone());
assert_eq!(commits.len(), 10);
let scores = vec![
(AuthorityIndex::new_for_test(1), 29),
(AuthorityIndex::new_for_test(0), 29),
(AuthorityIndex::new_for_test(3), 29),
(AuthorityIndex::new_for_test(2), 29),
];
assert_eq!(commits[0].reputation_scores_desc, scores);
for commit in commits.into_iter().skip(1) {
assert_eq!(commit.reputation_scores_desc, vec![]);
}
}
#[rstest]
#[tokio::test]
async fn test_handle_already_committed(
#[values(true, false)] consensus_median_timestamp: bool,
) {
telemetry_subscribers::init_for_testing();
let num_authorities = 4;
let (mut context, _) = Context::new_for_test(num_authorities);
context
.protocol_config
.set_consensus_median_based_commit_timestamp_for_testing(consensus_median_timestamp);
let context = Arc::new(context);
let dag_state = Arc::new(RwLock::new(DagState::new(
context.clone(),
Arc::new(MemStore::new()),
)));
let leader_schedule = Arc::new(LeaderSchedule::new(
context.clone(),
LeaderSwapTable::default(),
));
let mut linearizer =
Linearizer::new(context.clone(), dag_state.clone(), leader_schedule.clone());
let wave_length = DEFAULT_WAVE_LENGTH;
let leader_round_wave_1 = 3;
let leader_round_wave_2 = leader_round_wave_1 + wave_length;
// Build a Dag from round 1..=6
let mut dag_builder = DagBuilder::new(context.clone());
dag_builder.layers(1..=leader_round_wave_2).build();
// Now retrieve all the blocks up to round leader_round_wave_1 - 1
// And then only the leader of round leader_round_wave_1
// Also store those to DagState
let mut blocks = dag_builder.blocks(0..=leader_round_wave_1 - 1);
blocks.push(
dag_builder
.leader_block(leader_round_wave_1)
.expect("Leader block should have been found"),
);
dag_state.write().accept_blocks(blocks.clone());
let first_leader = dag_builder
.leader_block(leader_round_wave_1)
.expect("Wave 1 leader round block should exist");
let mut last_commit_index = 1;
let first_commit_data = TrustedCommit::new_for_test(
last_commit_index,
CommitDigest::MIN,
0,
first_leader.reference(),
blocks.iter().map(|block| block.reference()).collect(),
);
dag_state.write().add_commit(first_commit_data);
// Mark the blocks as committed in DagState. This will allow to correctly detect the committed blocks when the new linearizer logic is enabled.
for block in blocks.iter() {
dag_state.write().set_committed(&block.reference());
}
// Now take all the blocks from round `leader_round_wave_1` up to round `leader_round_wave_2-1`
let mut blocks = dag_builder.blocks(leader_round_wave_1..=leader_round_wave_2 - 1);
// Filter out leader block of round `leader_round_wave_1`
blocks.retain(|block| {
!(block.round() == leader_round_wave_1
&& block.author() == leader_schedule.elect_leader(leader_round_wave_1, 0))
});
// Add the leader block of round `leader_round_wave_2`
blocks.push(
dag_builder
.leader_block(leader_round_wave_2)
.expect("Leader block should have been found"),
);
// Write them in dag state
dag_state.write().accept_blocks(blocks.clone());
let mut blocks: Vec<_> = blocks.into_iter().map(|block| block.reference()).collect();
// Now get the latest leader which is the leader round of wave 2
let leader = dag_builder
.leader_block(leader_round_wave_2)
.expect("Leader block should exist");
last_commit_index += 1;
let expected_second_commit = TrustedCommit::new_for_test(
last_commit_index,
CommitDigest::MIN,
0,
leader.reference(),
blocks.clone(),
);
let commit = linearizer.handle_commit(vec![leader.clone()]);
assert_eq!(commit.len(), 1);
let subdag = &commit[0];
tracing::info!("{subdag:?}");
assert_eq!(subdag.leader, leader.reference());
assert_eq!(subdag.commit_ref.index, expected_second_commit.index());
let expected_ts = if consensus_median_timestamp {
median_timestamp_by_stake(
&context,
subdag.blocks.iter().filter_map(|block| {
if block.round() == subdag.leader.round - 1 {
Some(block.clone())
} else {
None
}
}),
)
.unwrap()
} else {
leader.timestamp_ms()
};
assert_eq!(subdag.timestamp_ms, expected_ts);
// Using the same sorting as used in CommittedSubDag::sort
blocks.sort_by(|a, b| a.round.cmp(&b.round).then_with(|| a.author.cmp(&b.author)));
assert_eq!(
subdag
.blocks
.clone()
.into_iter()
.map(|b| b.reference())
.collect::<Vec<_>>(),
blocks
);
for block in subdag.blocks.iter() {
assert!(block.round() <= expected_second_commit.leader().round);
}
}
/// This test will run the linearizer with GC disabled (gc_depth = 0) and gc enabled (gc_depth = 3) and make
/// sure that for the exact same DAG the linearizer will commit different blocks according to the rules.
#[rstest]
#[case(0, false)]
#[case(3, false)]
#[case(3, true)]
#[tokio::test]
async fn test_handle_commit_with_gc_simple(
#[case] gc_depth: u32,
#[case] consensus_median_timestamp: bool,
) {
telemetry_subscribers::init_for_testing();
let num_authorities = 4;
let (mut context, _keys) = Context::new_for_test(num_authorities);
context
.protocol_config
.set_consensus_gc_depth_for_testing(gc_depth);
context
.protocol_config
.set_consensus_median_based_commit_timestamp_for_testing(consensus_median_timestamp);
if gc_depth == 0 {
context
.protocol_config
.set_consensus_linearize_subdag_v2_for_testing(false);
}
let context = Arc::new(context);
let dag_state = Arc::new(RwLock::new(DagState::new(
context.clone(),
Arc::new(MemStore::new()),
)));
let leader_schedule = Arc::new(LeaderSchedule::new(
context.clone(),
LeaderSwapTable::default(),
));
let mut linearizer = Linearizer::new(context.clone(), dag_state.clone(), leader_schedule);
// Authorities of index 0->2 will always creates blocks that see each other, but until round 5 they won't see the blocks of authority 3.
// For authority 3 we create blocks that connect to all the other authorities.
// On round 5 we finally make the other authorities see the blocks of authority 3.
// Practically we "simulate" here a long chain created by authority 3 that is visible in round 5, but due to GC blocks of only round >=2 will
// be committed, when GC is enabled. When GC is disabled all blocks will be committed for rounds >= 1.
let dag_str = "DAG {
Round 0 : { 4 },
Round 1 : { * },
Round 2 : {
A -> [-D1],
B -> [-D1],
C -> [-D1],
D -> [*],
},
Round 3 : {
A -> [-D2],
B -> [-D2],
C -> [-D2],
},
Round 4 : {
A -> [-D3],
B -> [-D3],
C -> [-D3],
D -> [A3, B3, C3, D2],
},
Round 5 : { * },
}";
let (_, dag_builder) = parse_dag(dag_str).expect("Invalid dag");
dag_builder.print();
dag_builder.persist_all_blocks(dag_state.clone());
let leaders = dag_builder
.leader_blocks(1..=6)
.into_iter()
.flatten()
.collect::<Vec<_>>();
let commits = linearizer.handle_commit(leaders.clone());
for (idx, subdag) in commits.into_iter().enumerate() {
tracing::info!("{subdag:?}");
assert_eq!(subdag.leader, leaders[idx].reference());
let expected_ts = if consensus_median_timestamp {
let block_refs = leaders[idx]
.ancestors()
.iter()
.filter(|block_ref| block_ref.round == leaders[idx].round() - 1)
.cloned()
.collect::<Vec<_>>();
let blocks = dag_state
.read()
.get_blocks(&block_refs)
.into_iter()
.map(|block_opt| block_opt.expect("We should have all blocks in dag state."));
median_timestamp_by_stake(&context, blocks).unwrap()
} else {
leaders[idx].timestamp_ms()
};
assert_eq!(subdag.timestamp_ms, expected_ts);
if idx == 0 {
// First subdag includes the leader block only
assert_eq!(subdag.blocks.len(), 1);
} else if idx == 1 {
assert_eq!(subdag.blocks.len(), 3);
} else if idx == 2 {
// We commit:
// * 1 block on round 4, the leader block
// * 3 blocks on round 3, as no commit happened on round 3 since the leader was missing
// * 2 blocks on round 2, again as no commit happened on round 3, we commit the "sub dag" of leader of round 3, which will be another 2 blocks
assert_eq!(subdag.blocks.len(), 6);
} else {
// GC is enabled, so we expect to see only blocks of round >= 2
if gc_depth > 0 {
// Now it's going to be the first time that a leader will see the blocks of authority 3 and will attempt to commit
// the long chain. However, due to GC it will only commit blocks of round > 1. That's because it will commit blocks
// up to previous leader's round (round = 4) minus the gc_depth = 3, so that will be gc_round = 4 - 3 = 1. So we expect
// to see on the sub dag committed blocks of round >= 2.
assert_eq!(subdag.blocks.len(), 5);
assert!(
subdag.blocks.iter().all(|block| block.round() >= 2),
"Found blocks that are of round < 2."
);
// Also ensure that gc_round has advanced with the latest committed leader
assert_eq!(dag_state.read().gc_round(), subdag.leader.round - gc_depth);
} else {
// GC is disabled, so we expect to see all blocks of round >= 1
assert_eq!(subdag.blocks.len(), 6);
assert!(
subdag.blocks.iter().all(|block| block.round() >= 1),
"Found blocks that are of round < 1."
);
// GC round should never have moved
assert_eq!(dag_state.read().gc_round(), 0);
}
}
for block in subdag.blocks.iter() {
assert!(block.round() <= leaders[idx].round());
}
assert_eq!(subdag.commit_ref.index, idx as CommitIndex + 1);
}
}
#[rstest]
#[case(3, false)]
#[case(3, true)]
#[tokio::test]
async fn test_handle_commit_below_highest_committed_round(
#[case] gc_depth: u32,
#[case] consensus_median_timestamp: bool,
) {
telemetry_subscribers::init_for_testing();
let num_authorities = 4;
let (mut context, _keys) = Context::new_for_test(num_authorities);
context
.protocol_config
.set_consensus_gc_depth_for_testing(gc_depth);
context
.protocol_config
.set_consensus_median_based_commit_timestamp_for_testing(consensus_median_timestamp);
context
.protocol_config
.set_consensus_linearize_subdag_v2_for_testing(true);
let context = Arc::new(context);
let dag_state = Arc::new(RwLock::new(DagState::new(
context.clone(),
Arc::new(MemStore::new()),
)));
let leader_schedule = Arc::new(LeaderSchedule::new(
context.clone(),
LeaderSwapTable::default(),
));
let mut linearizer = Linearizer::new(context.clone(), dag_state.clone(), leader_schedule);
// Authority D will create an "orphaned" block on round 1 as it won't reference to it on the block of round 2. Similar, no other authority will reference to it on round 2.
// Then on round 3 the authorities A, B & C will link to block D1. Once the DAG gets committed we should see the block D1 getting committed as well. Normally ,as block D2 would
// have been committed first block D1 should be ommitted. With the new logic this is no longer true.
let dag_str = "DAG {
Round 0 : { 4 },
Round 1 : { * },
Round 2 : {
A -> [-D1],
B -> [-D1],
C -> [-D1],
D -> [-D1],
},
Round 3 : {
A -> [A2, B2, C2, D1],
B -> [A2, B2, C2, D1],
C -> [A2, B2, C2, D1],
D -> [A2, B2, C2, D2]
},
Round 4 : { * },
}";
let (_, dag_builder) = parse_dag(dag_str).expect("Invalid dag");
dag_builder.print();
dag_builder.persist_all_blocks(dag_state.clone());
let leaders = dag_builder
.leader_blocks(1..=4)
.into_iter()
.flatten()
.collect::<Vec<_>>();
let commits = linearizer.handle_commit(leaders.clone());
for (idx, subdag) in commits.into_iter().enumerate() {
tracing::info!("{subdag:?}");
assert_eq!(subdag.leader, leaders[idx].reference());
let expected_ts = if consensus_median_timestamp {
let block_refs = leaders[idx]
.ancestors()
.iter()
.filter(|block_ref| block_ref.round == leaders[idx].round() - 1)
.cloned()
.collect::<Vec<_>>();
let blocks = dag_state
.read()
.get_blocks(&block_refs)
.into_iter()
.map(|block_opt| block_opt.expect("We should have all blocks in dag state."));
median_timestamp_by_stake(&context, blocks).unwrap()
} else {
leaders[idx].timestamp_ms()
};
assert_eq!(subdag.timestamp_ms, expected_ts);
if idx == 0 {
// First subdag includes the leader block only B1
assert_eq!(subdag.blocks.len(), 1);
} else if idx == 1 {
// We commit:
// * 1 block on round 2, the leader block C2
// * 2 blocks on round 1, A1, C1
assert_eq!(subdag.blocks.len(), 3);
} else if idx == 2 {
// We commit:
// * 1 block on round 3, the leader block D3
// * 3 blocks on round 2, A2, B2, D2
assert_eq!(subdag.blocks.len(), 4);
assert!(
subdag.blocks.iter().any(|block| block.round() == 2
&& block.author() == AuthorityIndex::new_for_test(3)),
"Block D2 should have been committed."
);
} else if idx == 3 {
// We commit:
// * 1 block on round 4, the leader block A4
// * 3 blocks on round 3, A3, B3, C3
// * 1 block of round 1, D1
assert_eq!(subdag.blocks.len(), 5);
assert!(
subdag.blocks.iter().any(|block| block.round() == 1
&& block.author() == AuthorityIndex::new_for_test(3)),
"Block D1 should have been committed."
);
} else {
panic!("Unexpected subdag with index {:?}", idx);
}
for block in subdag.blocks.iter() {
assert!(block.round() <= leaders[idx].round());
}
assert_eq!(subdag.commit_ref.index, idx as CommitIndex + 1);
}
}
#[rstest]
#[case(false, 5_000, 5_000, 6_000)]
#[case(true, 3_000, 3_000, 6_000)]
#[tokio::test]
async fn test_calculate_commit_timestamp(
#[case] consensus_median_timestamp: bool,
#[case] timestamp_1: u64,
#[case] timestamp_2: u64,
#[case] timestamp_3: u64,
) {
// GIVEN
telemetry_subscribers::init_for_testing();
let num_authorities = 4;
let (mut context, _keys) = Context::new_for_test(num_authorities);
context
.protocol_config
.set_consensus_median_based_commit_timestamp_for_testing(consensus_median_timestamp);
let context = Arc::new(context);
let store = Arc::new(MemStore::new());
let dag_state = Arc::new(RwLock::new(DagState::new(context.clone(), store)));
let mut dag_state = dag_state.write();
let ancestors = vec![
VerifiedBlock::new_for_test(TestBlock::new(4, 0).set_timestamp_ms(1_000).build()),
VerifiedBlock::new_for_test(TestBlock::new(4, 1).set_timestamp_ms(2_000).build()),
VerifiedBlock::new_for_test(TestBlock::new(4, 2).set_timestamp_ms(3_000).build()),
VerifiedBlock::new_for_test(TestBlock::new(4, 3).set_timestamp_ms(4_000).build()),
];
let leader_block = VerifiedBlock::new_for_test(
TestBlock::new(5, 0)
.set_timestamp_ms(5_000)
.set_ancestors(
ancestors
.iter()
.map(|block| block.reference())
.collect::<Vec<_>>(),
)
.build(),
);
for block in &ancestors {
dag_state.accept_block(block.clone());
}
let last_commit_timestamp_ms = 0;
// WHEN
let timestamp = Linearizer::calculate_commit_timestamp(
&context,
&mut dag_state,
&leader_block,
last_commit_timestamp_ms,
);
assert_eq!(timestamp, timestamp_1);
// AND skip the block of authority 0 and round 4.
let leader_block = VerifiedBlock::new_for_test(
TestBlock::new(5, 0)
.set_timestamp_ms(5_000)
.set_ancestors(
ancestors
.iter()
.skip(1)
.map(|block| block.reference())
.collect::<Vec<_>>(),
)
.build(),
);
let timestamp = Linearizer::calculate_commit_timestamp(
&context,
&mut dag_state,
&leader_block,
last_commit_timestamp_ms,
);
assert_eq!(timestamp, timestamp_2);
// AND set the `last_commit_timestamp_ms` to 6_000
let last_commit_timestamp_ms = 6_000;
let timestamp = Linearizer::calculate_commit_timestamp(
&context,
&mut dag_state,
&leader_block,
last_commit_timestamp_ms,
);
assert_eq!(timestamp, timestamp_3);
// AND there is only one ancestor block to commit
let (mut context, _) = Context::new_for_test(1);
context
.protocol_config
.set_consensus_median_based_commit_timestamp_for_testing(consensus_median_timestamp);
let leader_block = VerifiedBlock::new_for_test(
TestBlock::new(5, 0)
.set_timestamp_ms(5_000)
.set_ancestors(
ancestors
.iter()
.take(1)
.map(|block| block.reference())
.collect::<Vec<_>>(),
)
.build(),
);
let last_commit_timestamp_ms = 0;
let timestamp = Linearizer::calculate_commit_timestamp(
&context,
&mut dag_state,
&leader_block,
last_commit_timestamp_ms,
);
if consensus_median_timestamp {
assert_eq!(timestamp, 1_000);
} else {
assert_eq!(timestamp, leader_block.timestamp_ms());
}
}
#[test]
fn test_median_timestamps_by_stake() {
// One total stake.
let timestamps = vec![(1_000, 1)];
assert_eq!(median_timestamps_by_stake_inner(timestamps, 1), 1_000);
// Odd number of total stakes.
let timestamps = vec![(1_000, 1), (2_000, 1), (3_000, 1)];
assert_eq!(median_timestamps_by_stake_inner(timestamps, 3), 2_000);
// Even number of total stakes.
let timestamps = vec![(1_000, 1), (2_000, 1), (3_000, 1), (4_000, 1)];
assert_eq!(median_timestamps_by_stake_inner(timestamps, 4), 3_000);
// Even number of total stakes, different order.
let timestamps = vec![(4_000, 1), (3_000, 1), (1_000, 1), (2_000, 1)];
assert_eq!(median_timestamps_by_stake_inner(timestamps, 4), 3_000);
// Unequal stakes.
let timestamps = vec![(2_000, 2), (4_000, 2), (1_000, 3), (3_000, 3)];
assert_eq!(median_timestamps_by_stake_inner(timestamps, 10), 3_000);
// Unequal stakes.
let timestamps = vec![
(500, 2),
(4_000, 2),
(2_500, 3),
(1_000, 5),
(3_000, 3),
(2_000, 4),
];
assert_eq!(median_timestamps_by_stake_inner(timestamps, 19), 2_000);
// One authority dominates.
let timestamps = vec![(1_000, 1), (2_000, 1), (3_000, 1), (4_000, 1), (5_000, 10)];
assert_eq!(median_timestamps_by_stake_inner(timestamps, 14), 5_000);
}
#[tokio::test]
async fn test_median_timestamps_by_stake_errors() {
let num_authorities = 4;
let (mut context, _keys) = Context::new_for_test(num_authorities);
context
.protocol_config
.set_consensus_median_based_commit_timestamp_for_testing(true);
let context = Arc::new(context);
// No blocks provided
let err = median_timestamp_by_stake(&context, vec![].into_iter()).unwrap_err();
assert_eq!(err, "No blocks provided");
// Blocks provided but total stake is less than quorum threshold
let block = VerifiedBlock::new_for_test(TestBlock::new(5, 0).build());
let err = median_timestamp_by_stake(&context, vec![block].into_iter()).unwrap_err();
assert_eq!(err, "Total stake 1 < quorum threshold 3");
}
}