consensus_core/base_committer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
// Copyright (c) Mysten Labs, Inc.
// SPDX-License-Identifier: Apache-2.0
use std::{collections::HashMap, fmt::Display, sync::Arc};
use consensus_config::{AuthorityIndex, Stake};
use parking_lot::RwLock;
use tracing::warn;
use crate::{
block::{BlockAPI, BlockRef, Round, Slot, VerifiedBlock},
commit::{LeaderStatus, WaveNumber, DEFAULT_WAVE_LENGTH, MINIMUM_WAVE_LENGTH},
context::Context,
dag_state::DagState,
leader_schedule::LeaderSchedule,
stake_aggregator::{QuorumThreshold, StakeAggregator},
};
#[cfg(test)]
#[path = "tests/base_committer_tests.rs"]
mod base_committer_tests;
#[cfg(test)]
#[path = "tests/base_committer_declarative_tests.rs"]
mod base_committer_declarative_tests;
pub(crate) struct BaseCommitterOptions {
/// TODO: Re-evaluate if we want this to be configurable after running experiments.
/// The length of a wave (minimum 3)
pub wave_length: u32,
/// The offset used in the leader-election protocol. This is used by the
/// multi-committer to ensure that each [`BaseCommitter`] instance elects
/// a different leader.
pub leader_offset: u32,
/// The offset of the first wave. This is used by the pipelined committer to
/// ensure that each[`BaseCommitter`] instances operates on a different
/// view of the dag.
pub round_offset: u32,
}
impl Default for BaseCommitterOptions {
fn default() -> Self {
Self {
wave_length: DEFAULT_WAVE_LENGTH,
leader_offset: 0,
round_offset: 0,
}
}
}
/// The [`BaseCommitter`] contains the bare bone commit logic. Once instantiated,
/// the method `try_direct_decide` and `try_indirect_decide` can be called at any
/// time and any number of times (it is idempotent) to determine whether a leader
/// can be committed or skipped.
pub(crate) struct BaseCommitter {
/// The per-epoch configuration of this authority.
context: Arc<Context>,
/// The consensus leader schedule to be used to resolve the leader for a
/// given round.
leader_schedule: Arc<LeaderSchedule>,
/// In memory block store representing the dag state
dag_state: Arc<RwLock<DagState>>,
/// The options used by this committer
options: BaseCommitterOptions,
}
impl BaseCommitter {
pub fn new(
context: Arc<Context>,
leader_schedule: Arc<LeaderSchedule>,
dag_state: Arc<RwLock<DagState>>,
options: BaseCommitterOptions,
) -> Self {
assert!(options.wave_length >= MINIMUM_WAVE_LENGTH);
Self {
context,
leader_schedule,
dag_state,
options,
}
}
/// Apply the direct decision rule to the specified leader to see whether we
/// can direct-commit or direct-skip it.
#[tracing::instrument(skip_all, fields(leader = %leader))]
pub fn try_direct_decide(&self, leader: Slot) -> LeaderStatus {
// Check whether the leader has enough blame. That is, whether there are 2f+1 non-votes
// for that leader (which ensure there will never be a certificate for that leader).
let voting_round = leader.round + 1;
if self.enough_leader_blame(voting_round, leader.authority) {
return LeaderStatus::Skip(leader);
}
// Check whether the leader(s) has enough support. That is, whether there are 2f+1
// certificates over the leader. Note that there could be more than one leader block
// (created by Byzantine leaders).
let wave = self.wave_number(leader.round);
let decision_round = self.decision_round(wave);
let leader_blocks = self.dag_state.read().get_uncommitted_blocks_at_slot(leader);
let mut leaders_with_enough_support: Vec<_> = leader_blocks
.into_iter()
.filter(|l| self.enough_leader_support(decision_round, l))
.map(LeaderStatus::Commit)
.collect();
// There can be at most one leader with enough support for each round, otherwise it means
// the BFT assumption is broken.
if leaders_with_enough_support.len() > 1 {
panic!(
"[{self}] More than one candidate for {leader}: {leaders_with_enough_support:?}"
);
}
leaders_with_enough_support
.pop()
.unwrap_or(LeaderStatus::Undecided(leader))
}
/// Apply the indirect decision rule to the specified leader to see whether
/// we can indirect-commit or indirect-skip it.
#[tracing::instrument(skip_all, fields(leader = %leader_slot))]
pub fn try_indirect_decide<'a>(
&self,
leader_slot: Slot,
leaders: impl Iterator<Item = &'a LeaderStatus>,
) -> LeaderStatus {
// The anchor is the first committed leader with round higher than the decision round of the
// target leader. We must stop the iteration upon encountering an undecided leader.
let anchors = leaders.filter(|x| leader_slot.round + self.options.wave_length <= x.round());
for anchor in anchors {
tracing::trace!(
"[{self}] Trying to indirect-decide {leader_slot} using anchor {anchor}",
);
match anchor {
LeaderStatus::Commit(anchor) => {
return self.decide_leader_from_anchor(anchor, leader_slot);
}
LeaderStatus::Skip(..) => (),
LeaderStatus::Undecided(..) => break,
}
}
LeaderStatus::Undecided(leader_slot)
}
pub fn elect_leader(&self, round: Round) -> Option<Slot> {
let wave = self.wave_number(round);
tracing::trace!(
"elect_leader: round={}, wave={}, leader_round={}, leader_offset={}",
round,
wave,
self.leader_round(wave),
self.options.leader_offset
);
if self.leader_round(wave) != round {
return None;
}
Some(Slot::new(
round,
self.leader_schedule
.elect_leader(round, self.options.leader_offset),
))
}
/// Return the leader round of the specified wave. The leader round is always
/// the first round of the wave. This takes into account round offset for when
/// pipelining is enabled.
pub(crate) fn leader_round(&self, wave: WaveNumber) -> Round {
(wave * self.options.wave_length) + self.options.round_offset
}
/// Return the decision round of the specified wave. The decision round is
/// always the last round of the wave. This takes into account round offset
/// for when pipelining is enabled.
pub(crate) fn decision_round(&self, wave: WaveNumber) -> Round {
let wave_length = self.options.wave_length;
(wave * wave_length) + wave_length - 1 + self.options.round_offset
}
/// Return the wave in which the specified round belongs. This takes into
/// account the round offset for when pipelining is enabled.
pub(crate) fn wave_number(&self, round: Round) -> WaveNumber {
round.saturating_sub(self.options.round_offset) / self.options.wave_length
}
/// Find which block is supported at a slot (author, round) by the given block.
/// Blocks can indirectly reference multiple other blocks at a slot, but only
/// one block at a slot will be supported by the given block. If block A supports B
/// at a slot, it is guaranteed that any processed block by the same author that
/// directly or indirectly includes A will also support B at that slot.
fn find_supported_block(&self, leader_slot: Slot, from: &VerifiedBlock) -> Option<BlockRef> {
if from.round() < leader_slot.round {
return None;
}
for ancestor in from.ancestors() {
if Slot::from(*ancestor) == leader_slot {
return Some(*ancestor);
}
// Weak links may point to blocks with lower round numbers than strong links.
if ancestor.round <= leader_slot.round {
continue;
}
let ancestor = self
.dag_state
.read()
.get_block(ancestor)
.unwrap_or_else(|| panic!("Block not found in storage: {:?}", ancestor));
if let Some(support) = self.find_supported_block(leader_slot, &ancestor) {
return Some(support);
}
}
None
}
/// Check whether the specified block (`potential_vote`) is a vote for
/// the specified leader (`leader_block`).
fn is_vote(&self, potential_vote: &VerifiedBlock, leader_block: &VerifiedBlock) -> bool {
let reference = leader_block.reference();
let leader_slot = Slot::from(reference);
self.find_supported_block(leader_slot, potential_vote) == Some(reference)
}
/// Check whether the specified block (`potential_certificate`) is a certificate
/// for the specified leader (`leader_block`). An `all_votes` map can be
/// provided as a cache to quickly skip checking against the block store on
/// whether a reference is a vote. This is done for efficiency. Bear in mind
/// that the `all_votes` should refer to votes considered to the same `leader_block`
/// and it can't be reused for different leaders.
fn is_certificate(
&self,
potential_certificate: &VerifiedBlock,
leader_block: &VerifiedBlock,
all_votes: &mut HashMap<BlockRef, bool>,
) -> bool {
let (gc_enabled, gc_round) = {
let dag_state = self.dag_state.read();
(dag_state.gc_enabled(), dag_state.gc_round())
};
let mut votes_stake_aggregator = StakeAggregator::<QuorumThreshold>::new();
for reference in potential_certificate.ancestors() {
let is_vote = if let Some(is_vote) = all_votes.get(reference) {
*is_vote
} else {
let potential_vote = self.dag_state.read().get_block(reference);
let is_vote = if gc_enabled {
if let Some(potential_vote) = potential_vote {
self.is_vote(&potential_vote, leader_block)
} else {
assert!(reference.round <= gc_round, "Block not found in storage: {:?} , and is not below gc_round: {gc_round}", reference);
false
}
} else {
let potential_vote = potential_vote
.unwrap_or_else(|| panic!("Block not found in storage: {:?}", reference));
self.is_vote(&potential_vote, leader_block)
};
all_votes.insert(*reference, is_vote);
is_vote
};
if is_vote {
tracing::trace!("[{self}] {reference} is a vote for {leader_block}");
if votes_stake_aggregator.add(reference.author, &self.context.committee) {
tracing::trace!(
"[{self}] {potential_certificate} is a certificate for leader {leader_block}"
);
return true;
}
} else {
tracing::trace!("[{self}] {reference} is not a vote for {leader_block}",);
}
}
tracing::trace!(
"[{self}] {potential_certificate} is not a certificate for leader {leader_block}"
);
false
}
/// Decide the status of a target leader from the specified anchor. We commit
/// the target leader if it has a certified link to the anchor. Otherwise, we
/// skip the target leader.
fn decide_leader_from_anchor(&self, anchor: &VerifiedBlock, leader_slot: Slot) -> LeaderStatus {
// Get the block(s) proposed by the leader. There could be more than one leader block
// in the slot from a Byzantine authority.
let leader_blocks = self
.dag_state
.read()
.get_uncommitted_blocks_at_slot(leader_slot);
// TODO: Re-evaluate this check once we have a better way to handle/track byzantine authorities.
if leader_blocks.len() > 1 {
tracing::warn!(
"Multiple blocks found for leader slot {leader_slot}: {:?}",
leader_blocks
);
}
// Get all blocks that could be potential certificates for the target leader. These blocks
// are in the decision round of the target leader and are linked to the anchor.
let wave = self.wave_number(leader_slot.round);
let decision_round = self.decision_round(wave);
let potential_certificates = self
.dag_state
.read()
.ancestors_at_round(anchor, decision_round);
// Use those potential certificates to determine which (if any) of the target leader
// blocks can be committed.
let mut certified_leader_blocks: Vec<_> = leader_blocks
.into_iter()
.filter(|leader_block| {
let mut all_votes = HashMap::new();
potential_certificates.iter().any(|potential_certificate| {
self.is_certificate(potential_certificate, leader_block, &mut all_votes)
})
})
.collect();
// There can be at most one certified leader, otherwise it means the BFT assumption is broken.
if certified_leader_blocks.len() > 1 {
panic!("More than one certified leader at wave {wave} in {leader_slot}: {certified_leader_blocks:?}");
}
// We commit the target leader if it has a certificate that is an ancestor of the anchor.
// Otherwise skip it.
match certified_leader_blocks.pop() {
Some(certified_leader_block) => LeaderStatus::Commit(certified_leader_block),
None => LeaderStatus::Skip(leader_slot),
}
}
/// Check whether the specified leader has 2f+1 non-votes (blames) to be directly skipped.
fn enough_leader_blame(&self, voting_round: Round, leader: AuthorityIndex) -> bool {
let voting_blocks = self
.dag_state
.read()
.get_uncommitted_blocks_at_round(voting_round);
let mut blame_stake_aggregator = StakeAggregator::<QuorumThreshold>::new();
for voting_block in &voting_blocks {
let voter = voting_block.reference().author;
if voting_block
.ancestors()
.iter()
.all(|ancestor| ancestor.author != leader)
{
tracing::trace!(
"[{self}] {voting_block} is a blame for leader {}",
Slot::new(voting_round - 1, leader)
);
if blame_stake_aggregator.add(voter, &self.context.committee) {
return true;
}
} else {
tracing::trace!(
"[{self}] {voting_block} is not a blame for leader {}",
Slot::new(voting_round - 1, leader)
);
}
}
false
}
/// Check whether the specified leader has 2f+1 certificates to be directly
/// committed.
fn enough_leader_support(&self, decision_round: Round, leader_block: &VerifiedBlock) -> bool {
let decision_blocks = self
.dag_state
.read()
.get_uncommitted_blocks_at_round(decision_round);
// Quickly reject if there isn't enough stake to support the leader from
// the potential certificates.
let total_stake: Stake = decision_blocks
.iter()
.map(|b| self.context.committee.stake(b.author()))
.sum();
if !self.context.committee.reached_quorum(total_stake) {
tracing::debug!(
"Not enough support for {leader_block}. Stake not enough: {total_stake} < {}",
self.context.committee.quorum_threshold()
);
return false;
}
let mut certificate_stake_aggregator = StakeAggregator::<QuorumThreshold>::new();
let mut all_votes = HashMap::new();
for decision_block in &decision_blocks {
let authority = decision_block.reference().author;
if self.is_certificate(decision_block, leader_block, &mut all_votes)
&& certificate_stake_aggregator.add(authority, &self.context.committee)
{
return true;
}
}
false
}
}
impl Display for BaseCommitter {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Committer-L{}-R{}",
self.options.leader_offset, self.options.round_offset
)
}
}
/// A builder for the base committer. By default, the builder creates a base committer
/// that has no leader or round offset. Which indicates single leader & pipelining
/// disabled.
#[cfg(test)]
mod base_committer_builder {
use super::*;
use crate::leader_schedule::LeaderSwapTable;
pub(crate) struct BaseCommitterBuilder {
context: Arc<Context>,
dag_state: Arc<RwLock<DagState>>,
wave_length: u32,
leader_offset: u32,
round_offset: u32,
}
impl BaseCommitterBuilder {
pub(crate) fn new(context: Arc<Context>, dag_state: Arc<RwLock<DagState>>) -> Self {
Self {
context,
dag_state,
wave_length: DEFAULT_WAVE_LENGTH,
leader_offset: 0,
round_offset: 0,
}
}
#[allow(unused)]
pub(crate) fn with_wave_length(mut self, wave_length: u32) -> Self {
self.wave_length = wave_length;
self
}
#[allow(unused)]
pub(crate) fn with_leader_offset(mut self, leader_offset: u32) -> Self {
self.leader_offset = leader_offset;
self
}
#[allow(unused)]
pub(crate) fn with_round_offset(mut self, round_offset: u32) -> Self {
self.round_offset = round_offset;
self
}
pub(crate) fn build(self) -> BaseCommitter {
let options = BaseCommitterOptions {
wave_length: DEFAULT_WAVE_LENGTH,
leader_offset: 0,
round_offset: 0,
};
BaseCommitter::new(
self.context.clone(),
Arc::new(LeaderSchedule::new(
self.context,
LeaderSwapTable::default(),
)),
self.dag_state,
options,
)
}
}
}